Skip to content

rohans-github/Astar-Pathfinding-Visualization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

A* Pathfinding Visualization πŸ€–

A python visualization of the A* path finding algorithm. It allows you to pick your start and end location and view the process of finding the shortest path.

animated

Description πŸ“„

A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.). It does this by maintaining a tree of paths originating at the start node and extending those paths one edge at a time until the goal node is reached.

At each iteration of its main loop, A* needs to determine which of its paths to extend. It does so based on the cost of the path and an estimate of the cost required to extend the path all the way to the goal. Specifically, A* selects the path that minimizes

f(n)=g(n)+h(n)

where n is the next node on the path, g(n) is the cost of the path from the start node to n, and h(n) is a heuristic function that estimates the cost of the cheapest path from n to the goal.

Applications of A* Algorithm πŸ–₯️

The A* algorithm is widely used in various domains for pathfinding and optimization problems. It has applications in robotics, video games, route planning, logistics, and artificial intelligence. In robotics, A* helps robots navigate obstacles and find optimal paths. In video games, it enables NPCs to navigate game environments intelligently. Route planning applications use A* to find the shortest or fastest routes between locations. Logistics industries utilize A* for vehicle routing and scheduling. A* is also employed in AI systems, such as natural language processing and machine learning, to optimize decision-making processes. Its versatility and efficiency make it a valuable algorithm in many real-world scenarios.

Installation πŸš€

To deploy this project install Pygame

  pip install pygame

About

implementing the a* search algorithm using python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages