-
Notifications
You must be signed in to change notification settings - Fork 283
Description
Hi,
My loss function uses the weight of the last layer (call it S) and output of the intermediate layer (call it h). S is 3x2 matrix and h is batch_size x 3 matrix. The loss function computes mean and variance using S and h and then compute the log-likelihood from a multivariate normal distribution.
Mean(batch x 2 tensor) is computed as = h x S
Covariance(batch x 2 x 2 tensor) is computed as = S' x diag(h) x S
where x is matrix multiplication, S' is transpose of S, diag(h) is batch of diagonal matrices for each row in h.
Now computing mean is straightforward whereas computing covariance requires couple of reshape, and permute_dimensions operations.
I am using adam optimizer. here is where I get error when I run the fit model function.
I get the following error:
Error in py_call_impl(callable, dots$args, dots$keywords) :
InvalidArgumentError: -1 is not between 0 and 3
[[{{node training_9/Adam/gradients/loss_13/S_loss/transpose_4_grad/InvertPermutation}} = InvertPermutation[T=DT_INT32, _class=["loc:@training_9/Adam/gradients/loss_13/S_loss/transpose_4_grad/transpose"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](loss_13/S_loss/transpose_4/perm)]]
Detailed traceback:
File "/home/ophiuchus/miniconda3/envs/keras/lib/python3.6/site-packages/keras/engine/training.py", line 1039, in fit
validation_steps=validation_steps)
File "/home/ophiuchus/miniconda3/envs/keras/lib/python3.6/site-packages/keras/engine/training_arrays.py", line 199, in fit_loop
outs = f(ins_batch)
File "/home/ophiuchus/miniconda3/envs/keras/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2715, in __call__
return self._call(inputs)
File "/home/ophiuchus/miniconda3/envs/keras/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2675, in _call
fetched =
the code to reproduce this error is:
library(keras)
library(tensorflow)
# Define Model --------------------------------------------------------------
# input layer
inputs <- layer_input(shape = c(2))
intermediate1 <- inputs %>% layer_dense(units = 32, activation = 'sigmoid')
log.h <- intermediate1 %>% layer_dense(units = 3, name = 'log_h' , kernel_regularizer = regularizer_l1(0.001))
predictions <- log.h %>% layer_dense(units = 2, name = 'S', use_bias = FALSE, kernel_regularizer = regularizer_l1(0.001))
# create model
model <- keras_model(inputs = inputs, outputs = predictions)
# Loss & Compile -----------------------------------------------------------
loss.nll.2 = function(y_true, y_pred){
loss.S <- k_variable(get_weights(get_layer(model, 'S'))[[1]]) # get layer weight
loss.S_T <- k_transpose(loss.S)
h.exp <- k_exp(log.h)
h.diag <- tf$matrix_diag(h.exp) # n x 3 x 3 # shape
h.diag <- k_reshape(h.diag, shape=c(-1L, 3L)) # (n * 3) x 3
h.diag <- k_transpose(h.diag) # 3 x (n * 3)
dx.var.train <- k_dot(loss.S_T, h.diag) # 2 x (n * 3)
dx.var.train <- k_transpose(dx.var.train) # (n * 3) x 2
dx.var.train <- k_reshape(dx.var.train, shape=c(-1L, 3L, 2L)) # n x 3 x 2
dx.var.train <- k_permute_dimensions(dx.var.train, c(0L, 2L, 1L)) # n x 2 x 3
dx.var.train <- k_reshape(dx.var.train, shape=c(-1L, 3L)) # (n * 2) x 3
dx.var.train <- k_dot(dx.var.train, loss.S) # (n * 2) x 2
dx.var.train <- k_reshape(dx.var.train, shape=c(-1L, 2L, 2L)) # n x 2 x 2
dx.var.train <- k_permute_dimensions(dx.var.train, c(0L, 2L, 1L)) # n x 2 x 2
dx.mean.train <- k_dot(h.exp,loss.S)
nll <- -k_sum(tf$contrib$distributions$MultivariateNormalFullCovariance(loc=dx.mean.train, covariance_matrix=dx.var.train)$log_prob(y_true))
return(nll)
}
model %>% compile(
optimizer = 'adam',
loss = loss.nll.2
)
# Training & Evaluation ----------------------------------------------------
x_train <- matrix(rexp(200, rate=.1), ncol=2)
y_train <- matrix(rexp(200, rate=.1), ncol=2)
# Fit model to data
history <- model %>% fit(
x_train, y_train,
epochs = 1000,
verbose = 1
)
I have changed the computation graph, but the loss function is exactly the same as I will be using it.
Please help me solve this error.