Skip to content
This repository was archived by the owner on Jan 13, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 29 additions & 1 deletion _unittests/ut_onnxrt/test_cpu_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,18 @@
from logging import getLogger
import numpy
import onnx
from pyquickhelper.pycode import ExtTestCase
from sklearn.ensemble import RandomForestClassifier
from sklearn.multiclass import OneVsRestClassifier
from pyquickhelper.pycode import ExtTestCase, ignore_warnings
from skl2onnx.algebra.onnx_ops import ( # pylint: disable=E0611
OnnxConv)
from mlprodict.onnx_conv import to_onnx
from mlprodict.onnxrt.ops_cpu.op_conv import Conv
from mlprodict.onnxrt.onnx2py_helper import _var_as_dict
from mlprodict.tools.asv_options_helper import get_opset_number_from_onnx
from mlprodict.onnxrt import OnnxInference
from mlprodict.testing.test_utils.tests_helper import fit_multilabel_classification_model
from mlprodict.testing.test_utils import TARGET_OPSET


class TestCpuOps(ExtTestCase):
Expand All @@ -20,6 +25,7 @@ def setUp(self):
logger = getLogger('skl2onnx')
logger.disabled = True

@ignore_warnings(DeprecationWarning)
def test_cpu_conv(self):

x = numpy.array([[[[0., 1., 2., 3., 4.], # (1, 1, 5, 5) input tensor
Expand Down Expand Up @@ -132,6 +138,28 @@ def test_cpu_conv_group(self):
ii, diff[ii], gotrt['Y'].ravel()[ii], got['Y'].ravel()[ii]))
self.assertEqualArray(gotrt['Y'], got['Y'], decimal=5)

def test_slice_bug(self):

for opset in [9, 12, TARGET_OPSET]:
if opset > TARGET_OPSET:
continue
model = OneVsRestClassifier(
RandomForestClassifier(n_estimators=2, max_depth=3))
model, X = fit_multilabel_classification_model(
model, 3, is_int=False, n_features=5)
model_onnx = to_onnx(
model, X[:1], target_opset=opset,
options={id(model): {'zipmap': False}})
X = X[:7]
for rt in ['python', 'onnxruntime1']:
with self.subTest(opset=opset, rt=rt):
oinf = OnnxInference(model_onnx, runtime=rt)
got = oinf.run({'X': X})
exp = model.predict(X), model.predict_proba(X)
self.assertEqual(exp[1].shape[1], 3)
self.assertEqualArray(exp[0], got['label'])
self.assertEqualArray(exp[1], got['probabilities'])


if __name__ == "__main__":
unittest.main()
129 changes: 74 additions & 55 deletions _unittests/ut_onnxrt/test_onnxrt_python_runtime_.py
Original file line number Diff line number Diff line change
Expand Up @@ -2161,60 +2161,79 @@ def test_onnxt_runtime_sin(self):

@wraplog()
def test_onnxt_runtime_slice(self):
# steps
x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32) # pylint: disable=E1101
y = x[0:3:2, 0:10:2]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
axes = numpy.array([0, 1], dtype=numpy.int64)
steps = numpy.array([2, 2], dtype=numpy.int64)
onx = OnnxSlice('X', starts, ends, axes, steps, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])

# other
x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32) # pylint: disable=E1101
y = x[0:3, 0:10]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
onx = OnnxSlice('X', starts, ends, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])

x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32) # pylint: disable=E1101
y = x[0:3, 0:10]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
axes = numpy.array([0, 1], dtype=numpy.int64)
onx = OnnxSlice('X', starts, ends, axes, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])

x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32) # pylint: disable=E1101
y = x[0:3:-1, 0:10:2]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
axes = numpy.array([0, 1], dtype=numpy.int64)
steps = numpy.array([-1, 2], dtype=numpy.int64)
onx = OnnxSlice('X', starts, ends, axes, steps, output_names=['Y'],
op_version=get_opset_number_from_onnx())
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=get_opset_number_from_onnx())
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])
for opset in [9, get_opset_number_from_onnx()]:
if opset > get_opset_number_from_onnx():
continue
with self.subTest(opset=opset):
# steps
x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32) # pylint: disable=E1101
y = x[0:3:2, 0:10:2]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
axes = numpy.array([0, 1], dtype=numpy.int64)
steps = numpy.array([2, 2], dtype=numpy.int64)
if opset < 10:
onx = OnnxSlice('X', starts=starts, ends=ends, axes=axes,
output_names=['Y'], op_version=opset)
y = x[0:3, 0:10]
else:
onx = OnnxSlice('X', starts, ends, axes, steps,
output_names=['Y'], op_version=opset)
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=opset)
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])

# other
x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32)
y = x[0:3, 0:10]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
if opset < 10:
onx = OnnxSlice('X', starts=starts, ends=ends,
output_names=['Y'], op_version=opset)
else:
onx = OnnxSlice('X', starts, ends, output_names=['Y'],
op_version=opset)
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=opset)
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])

x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32)
y = x[0:3, 0:10]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
axes = numpy.array([0, 1], dtype=numpy.int64)
if opset < 10:
onx = OnnxSlice('X', starts=starts, ends=ends, axes=axes,
output_names=['Y'], op_version=opset)
else:
onx = OnnxSlice('X', starts, ends, axes, output_names=['Y'],
op_version=opset)
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=opset)
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])

if opset < 10:
continue
x = numpy.random.randn(20, 10, 5).astype( # pylint: disable=E1101
numpy.float32)
y = x[0:3:-1, 0:10:2]
starts = numpy.array([0, 0], dtype=numpy.int64)
ends = numpy.array([3, 10], dtype=numpy.int64)
axes = numpy.array([0, 1], dtype=numpy.int64)
steps = numpy.array([-1, 2], dtype=numpy.int64)
onx = OnnxSlice('X', starts, ends, axes, steps, output_names=['Y'],
op_version=opset)
model_def = onx.to_onnx({'X': x.astype(numpy.float32)},
target_opset=opset)
got = OnnxInference(model_def).run({'X': x})
self.assertEqualArray(y, got['Y'])
python_tested.append(OnnxSlice)

@wraplog()
Expand Down Expand Up @@ -2792,5 +2811,5 @@ def test_make_constant(self):


if __name__ == "__main__":
# TestOnnxrtPythonRuntime().test_make_constant()
# TestOnnxrtPythonRuntime().test_onnxt_runtime_slice()
unittest.main()
5 changes: 5 additions & 0 deletions mlprodict/onnxrt/ops_cpu/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -558,8 +558,13 @@ def __init__(self, numpy_fct, onnx_node, desc=None,
expected_attributes=expected_attributes,
**options)
self.numpy_fct = numpy_fct
self._cannot_inplace_int = self.numpy_fct in (
numpy.divide, numpy.true_divide)

def _run(self, a, b): # pylint: disable=W0221
if (self._cannot_inplace_int and
numpy.issubdtype(a.dtype, numpy.integer)):
return (self.numpy_fct(a, b), )
if self.inplaces.get(0, False) and a.size >= b.size:
if len(a.shape) == 1 and b.shape == (1, 1):
a = a.reshape(1, a.shape[0])
Expand Down
2 changes: 1 addition & 1 deletion mlprodict/onnxrt/ops_cpu/_op_list.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@
from .op_sigmoid import Sigmoid
from .op_sign import Sign
from .op_sin import Sin
from .op_slice import Slice
from .op_slice import Slice, Slice_1, Slice_10
from .op_split import Split
from .op_softmax import Softmax
from .op_solve import Solve
Expand Down
42 changes: 39 additions & 3 deletions mlprodict/onnxrt/ops_cpu/op_slice.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,12 @@
@file
@brief Runtime operator.
"""
from ._op import OpRun
from onnx.defs import onnx_opset_version
from ..shape_object import ShapeObject
from ._op import OpRun


class Slice(OpRun):
class SliceCommon(OpRun):

def __init__(self, onnx_node, desc=None, **options):
OpRun.__init__(self, onnx_node, desc=desc,
Expand All @@ -34,5 +35,40 @@ def _run(self, data, starts, ends, axes=None, steps=None): # pylint: disable=W0

def _infer_shapes(self, data, starts, ends, axes=None, steps=None): # pylint: disable=W0221
pref = str(hex(id(self))[2:])
shape = ["nslice%s_%d" % (pref, i) for i in range(len(data))]
shape = ["nslice%s_%d" % (pref, i) for i in range(len(data.shape))]
return (ShapeObject(shape, data.dtype), )


class Slice_10(SliceCommon):
def __init__(self, onnx_node, desc=None, **options):
SliceCommon.__init__(self, onnx_node, desc=desc,
**options)


class Slice_1(SliceCommon):

atts = {'starts': [], 'ends': [], 'axes': []}

def __init__(self, onnx_node, desc=None, **options):
SliceCommon.__init__(self, onnx_node, desc=desc,
expected_attributes=Slice_1.atts,
**options)
for f in ['starts', 'ends', 'steps', 'axes']:
if not hasattr(self, f):
continue
if getattr(self, f) is not None and len(getattr(self, f)) == 0:
setattr(self, f, None)

def _run(self, data): # pylint: disable=W0221
return SliceCommon._run(
self, data, self.starts, self.ends, self.axes)

def _infer_shapes(self, data): # pylint: disable=W0221
return SliceCommon._infer_shapes(
self, data, self.starts, self.ends, self.axes)


if onnx_opset_version() >= 10:
Slice = Slice_10
else:
Slice = Slice_1 # pragma: no cover
5 changes: 3 additions & 2 deletions mlprodict/onnxrt/shape_object.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@ def __init__(self, name, fct, fct_string, *args):
for a in self._args:
if not isinstance(a, DimensionObject):
raise TypeError(
"All arguments must be of type DimensionObject not '{}'.".format(type(a)))
"All arguments must be of type DimensionObject not '{}'."
"".format(type(a)))

def __repr__(self):
"""
Expand Down Expand Up @@ -649,7 +650,7 @@ def __repr__(self):

st_shape = []
for s in self.shape:
if isinstance(s._dim, (int, str)):
if isinstance(getattr(s, "_dim", None), (int, str)):
st_shape.append(str(s._dim))
else:
st_shape.append(repr(s))
Expand Down