Skip to content
This repository was archived by the owner on Jan 13, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 25 additions & 4 deletions _doc/sphinxdoc/source/api/npy.rst
Original file line number Diff line number Diff line change
Expand Up @@ -53,19 +53,35 @@ as opposed to numpy. This approach is similar to what
:epkg:`tensorflow` with `autograph
<https://www.tensorflow.org/api_docs/python/tf/autograph>`_.

NDArray
+++++++
Signatures
++++++++++

.. autosignature:: mlprodict.npy.onnx_numpy_annotation.NDArray
:members:

onnxnumpy
+++++++++
.. autosignature:: mlprodict.npy.onnx_numpy_annotation.NDArraySameType
:members:

.. autosignature:: mlprodict.npy.onnx_numpy_annotation.NDArraySameTypeSameShape
:members:

.. autosignature:: mlprodict.npy.onnx_numpy_annotation.NDArrayType
:members:

.. autosignature:: mlprodict.npy.onnx_numpy_annotation.NDArrayTypeSameShape
:members:

Decorators
++++++++++

.. autosignature:: mlprodict.npy.onnx_numpy_wrapper.onnxnumpy

.. autosignature:: mlprodict.npy.onnx_numpy_wrapper.onnxnumpy_default

.. autosignature:: mlprodict.npy.onnx_numpy_wrapper.onnxnumpy_np

.. autosignature:: mlprodict.npy.onnx_sklearn_wrapper.onnxsklearn_transformer

OnnxNumpyCompiler
+++++++++++++++++

Expand All @@ -78,6 +94,11 @@ OnnxVar
.. autosignature:: mlprodict.npy.onnx_variable.OnnxVar
:members:

Registration
++++++++++++

.. autosignature:: mlprodict.npy.onnx_sklearn_wrapper.update_registered_converter_npy

.. _l-numpy-onnxpy-list-fct:

Available numpy functions implemented with ONNX operators
Expand Down
2 changes: 1 addition & 1 deletion _unittests/ut_npy/test_complex_scenario.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
"""
@brief test log(time=3s)
@brief test log(time=21s)
"""
import unittest
import warnings
Expand Down
138 changes: 138 additions & 0 deletions _unittests/ut_npy/test_custom_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# -*- coding: utf-8 -*-
"""
@brief test log(time=3s)
"""
import unittest
import warnings
from logging import getLogger
import numpy
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.decomposition import PCA
from pyquickhelper.pycode import ExtTestCase, ignore_warnings
from skl2onnx import update_registered_converter
from skl2onnx.algebra.onnx_ops import ( # pylint: disable=E0611
OnnxIdentity, OnnxMatMul, OnnxSub)
from skl2onnx.algebra.onnx_operator import OnnxSubOperator
from skl2onnx.common.data_types import guess_numpy_type
from mlprodict.onnx_conv import to_onnx
from mlprodict.onnxrt import OnnxInference
from mlprodict.npy import onnxsklearn_transformer


class DecorrelateTransformer(TransformerMixin, BaseEstimator):
def __init__(self, alpha=0.):
BaseEstimator.__init__(self)
TransformerMixin.__init__(self)
self.alpha = alpha

def fit(self, X, y=None, sample_weights=None):
self.pca_ = PCA(X.shape[1]) # pylint: disable=W0201
self.pca_.fit(X)
return self

def transform(self, X):
return self.pca_.transform(X)


def decorrelate_transformer_shape_calculator(operator):
op = operator.raw_operator
input_type = operator.inputs[0].type.__class__
input_dim = operator.inputs[0].type.shape[0]
output_type = input_type([input_dim, op.pca_.components_.shape[1]])
operator.outputs[0].type = output_type


def decorrelate_transformer_converter(scope, operator, container):
op = operator.raw_operator
opv = container.target_opset
out = operator.outputs
X = operator.inputs[0]
subop = OnnxSubOperator(op.pca_, X, op_version=opv)
Y = OnnxIdentity(subop, op_version=opv, output_names=out[:1])
Y.add_to(scope, container)


class DecorrelateTransformer2(DecorrelateTransformer):
pass


def decorrelate_transformer_converter2(scope, operator, container):
op = operator.raw_operator
opv = container.target_opset
out = operator.outputs
X = operator.inputs[0]
dtype = guess_numpy_type(X.type)
m = OnnxMatMul(
OnnxSub(X, op.pca_.mean_.astype(dtype), op_version=opv),
op.pca_.components_.T.astype(dtype), op_version=opv)
Y = OnnxIdentity(m, op_version=opv, output_names=out[:1])
Y.add_to(scope, container)


class DecorrelateTransformer3(DecorrelateTransformer):
pass


@onnxsklearn_transformer(register_class=DecorrelateTransformer3)
def decorrelate_transformer_converter3(X, op=None):
if X.dtype is None:
raise AssertionError("X.dtype cannot be None.")
mean = op.pca_.mean_.astype(X.dtype)
cmp = op.pca_.components_.T.astype(X.dtype)
return (X - mean) @ cmp


class TestCustomTransformer(ExtTestCase):

def setUp(self):
logger = getLogger('skl2onnx')
logger.disabled = True
with warnings.catch_warnings():
warnings.simplefilter("ignore", ResourceWarning)
update_registered_converter(
DecorrelateTransformer, "SklearnDecorrelateTransformer",
decorrelate_transformer_shape_calculator,
decorrelate_transformer_converter)
update_registered_converter(
DecorrelateTransformer2, "SklearnDecorrelateTransformer2",
decorrelate_transformer_shape_calculator,
decorrelate_transformer_converter2)

@ignore_warnings((DeprecationWarning, RuntimeWarning))
def test_function_transformer(self):
X = numpy.random.randn(20, 2).astype(numpy.float32)
dec = DecorrelateTransformer()
dec.fit(X)
onx = to_onnx(dec, X.astype(numpy.float32))
oinf = OnnxInference(onx)
exp = dec.transform(X)
got = oinf.run({'X': X})
self.assertEqualArray(exp, got['variable'])

@ignore_warnings((DeprecationWarning, RuntimeWarning))
def test_function_transformer2(self):
X = numpy.random.randn(20, 2).astype(numpy.float32)
dec = DecorrelateTransformer2()
dec.fit(X)
onx = to_onnx(dec, X.astype(numpy.float32))
oinf = OnnxInference(onx)
exp = dec.transform(X)
got = oinf.run({'X': X})
self.assertEqualArray(exp, got['variable'])

@ignore_warnings((DeprecationWarning, RuntimeWarning))
def test_function_transformer3_float32(self):
X = numpy.random.randn(20, 2).astype(numpy.float32)
dec = DecorrelateTransformer3()
dec.fit(X)
onx = to_onnx(dec, X.astype(numpy.float32))
oinf = OnnxInference(onx)
exp = dec.transform(X)
got = oinf.run({'X': X})
self.assertEqualArray(exp, got['variable'])
X2 = decorrelate_transformer_converter3(X, op=dec)
self.assertEqualArray(X2, got['variable'])


if __name__ == "__main__":
unittest.main()
12 changes: 12 additions & 0 deletions _unittests/ut_npy/test_onnxpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidArgument # pylint: disable=E0611
from pyquickhelper.pycode import ExtTestCase
from mlprodict.npy import OnnxNumpyCompiler as ONC, NDArray
from mlprodict.npy.onnx_variable import OnnxVar
from mlprodict.npy.onnx_numpy_annotation import _NDArrayAlias
from skl2onnx.algebra.onnx_ops import OnnxAbs # pylint: disable=E0611
from skl2onnx.common.data_types import FloatTensorType
Expand All @@ -25,6 +26,17 @@ def onnx_abs_shape(x: NDArray[(Any, Any), numpy.float32],
op_version=None) -> NDArray[(Any, Any), numpy.float32]:
return OnnxAbs(x, op_version=op_version)

def test_onnx_var(self):
ov = OnnxVar('X')
rp = repr(ov)
self.assertEqual("OnnxVar('X')", rp)
ov = OnnxVar('X', op=OnnxAbs)
rp = repr(ov)
self.assertEqual("OnnxVar('X', op=OnnxAbs)", rp)
ov = OnnxVar('X', op='filter')
rp = repr(ov)
self.assertEqual("OnnxVar('X', op='filter')", rp)

def test_process_dtype(self):
for name in ['all', 'int', 'ints', 'floats', 'T']:
res = _NDArrayAlias._process_type( # pylint: disable=W0212
Expand Down
3 changes: 2 additions & 1 deletion _unittests/ut_onnxrt/test_onnxrt_runtime_empty.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,8 @@ def test_onnxt_runtime_empty_unknown(self):
Z = helper.make_tensor_value_info(
'Z', TensorProto.FLOAT, [None, 2]) # pylint: disable=E1101
node_def = helper.make_node('Add', ['X', 'Y'], ['Zt'], name='Zt')
node_def2 = helper.make_node('AddUnknown', ['X', 'Zt'], ['Z'], name='Z')
node_def2 = helper.make_node(
'AddUnknown', ['X', 'Zt'], ['Z'], name='Z')
graph_def = helper.make_graph(
[node_def, node_def2], 'test-model', [X, Y], [Z])
model_def = helper.make_model(graph_def, producer_name='onnx-example')
Expand Down
2 changes: 2 additions & 0 deletions mlprodict/npy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,5 @@
Shape, DType)
from .onnx_numpy_compiler import OnnxNumpyCompiler
from .onnx_numpy_wrapper import onnxnumpy, onnxnumpy_default, onnxnumpy_np
from .onnx_sklearn_wrapper import (
onnxsklearn_transformer, update_registered_converter_npy)
Loading