Skip to content
This repository was archived by the owner on Jan 13, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 13 additions & 9 deletions _unittests/ut_onnxrt/test_onnxrt_python_runtime_ml_text.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,19 @@ def test_onnxrt_label_encoder_floats(self):
self.assertEqualArray(
res['out'], numpy.array([0.3, 0.4, 0.5, 0.4], dtype=numpy.float32))

def test_onnxrt_label_encoder_string_floats(self):

op = OnnxLabelEncoder(
'text', op_version=get_opset_number_from_onnx(),
keys_strings=['AA', 'BB', 'CC'],
values_floats=[0.1, 0.2, 0.3],
output_names=['out'])

onx = op.to_onnx(inputs=[('text', StringTensorType())])
oinf = OnnxInference(onx)
res = oinf.run({'text': numpy.array(['AA', 'DD']).reshape((-1, 1))})
self.assertEqualArray(res['out'], numpy.array([0.1, 0]))

def test_onnxrt_label_encoder_raise(self):

self.assertRaise(
Expand All @@ -68,15 +81,6 @@ def test_onnxrt_label_encoder_raise(self):
output_names=['out']),
TypeError)

op = OnnxLabelEncoder(
'text', op_version=get_opset_number_from_onnx(),
keys_strings=['AA', 'BB', 'CC'],
values_floats=[0.1, 0.2, 0.3],
output_names=['out'])

onx = op.to_onnx(inputs=[('text', StringTensorType())])
self.assertRaise(lambda: OnnxInference(onx), RuntimeError)

op = OnnxLabelEncoder(
'text', op_version=get_opset_number_from_onnx(),
keys_strings=['AA', 'BB', 'CC'],
Expand Down
5 changes: 5 additions & 0 deletions mlprodict/onnxrt/ops_cpu/op_label_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,11 @@ def __init__(self, onnx_node, desc=None, **options):
self.keys_int64s, self.values_floats)}
self.default_ = self.default_int64
self.dtype_ = numpy.float32
elif len(self.keys_strings) > 0 and len(self.values_floats) > 0:
self.classes_ = {k.decode('utf-8'): v for k, v in zip(
self.keys_strings, self.values_floats)}
self.default_ = self.default_float
self.dtype_ = numpy.float32
elif len(self.keys_strings) > 0 and len(self.values_int64s) > 0:
self.classes_ = {k.decode('utf-8'): v for k, v in zip(
self.keys_strings, self.values_int64s)}
Expand Down