Skip to content
2 changes: 1 addition & 1 deletion src/llama-graph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1106,7 +1106,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(

if (!weight_before_ffn) {
experts = ggml_mul(ctx0, experts, weights);
cb(cur, "ffn_moe_weighted", il);
cb(experts, "ffn_moe_weighted", il);
}

ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
Expand Down
1 change: 1 addition & 0 deletions src/models/deepseek2.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
else {
ggml_tensor * q = NULL;
Expand Down
205 changes: 112 additions & 93 deletions tools/mtmd/clip.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -667,9 +667,9 @@ struct clip_graph {
constexpr int _depth = 12;
constexpr int enc_n_heads = 12;
constexpr int enc_d_heads = enc_n_embd / enc_n_heads;
constexpr int _prompt_n_embd = 256;
// constexpr int _prompt_n_embd = 256;
constexpr int enc_patch_size = 16;
constexpr int _window_size = 14;
// constexpr int _window_size = 14;

const int enc_n_patches = enc_image_size / enc_patch_size; // 64

Expand Down Expand Up @@ -739,13 +739,14 @@ struct clip_graph {

struct ggml_tensor * q_r = ggml_reshape_4d(ctx0, Qcur, enc_d_heads, W, H, B * enc_n_heads);

struct ggml_tensor * rel_w = ggml_cont(
ctx0,
ggml_permute(ctx0, ggml_mul_mat(ctx0, rw, ggml_cont(ctx0, ggml_permute(ctx0, q_r, 0, 2, 1, 3))), 0,
2, 1, 3));
struct ggml_tensor * rel_w = ggml_cont(ctx0,ggml_permute(ctx0,
ggml_mul_mat(ctx0,
rw,
ggml_cont(ctx0, ggml_permute(ctx0, q_r, 0, 2, 1, 3))),
0, 2, 1, 3));
struct ggml_tensor * rel_h = ggml_mul_mat(ctx0, rh, q_r);

struct ggml_tensor * attn = add_rel_pos_inplace(ctx0, KQ_scaled, rel_w, rel_h, W);
struct ggml_tensor * attn = add_rel_pos_inplace(ctx0, KQ_scaled, rel_w, rel_h);

struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, attn);

Expand Down Expand Up @@ -834,7 +835,7 @@ struct clip_graph {

ggml_tensor * global_features_1 = build_sam_enc(inp_raw, std::max(img.nx, img.ny));

ggml_tensor * global_features_2 = build_dp_ocr_clip(inp_raw, global_features_1);
ggml_tensor * global_features_2 = build_dp_ocr_clip(global_features_1);

// torch global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features_1 = ggml_cont(ctx0,ggml_permute(ctx0, global_features_1,2,1,0,3));
Expand Down Expand Up @@ -1532,7 +1533,7 @@ struct clip_graph {
return gf;
}

ggml_tensor * build_dp_ocr_clip(ggml_tensor * inpL, ggml_tensor * patch_embeds) {
ggml_tensor * build_dp_ocr_clip(ggml_tensor * patch_embeds) {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);

Expand Down Expand Up @@ -2466,103 +2467,119 @@ struct clip_graph {
return inpL;
}

// attn: [k_h*k_w, q_h*q_w]
// rel_h: [q_h, q_w, k_h]
// rel_w: [q_h, q_w, k_w]

static ggml_tensor * add_rel_pos_inplace(
ggml_context * ctx,
ggml_tensor * attn,
ggml_tensor * rel_w,
ggml_tensor * rel_h,
int q_size
) {

ggml_tensor *attn_4d =
ggml_reshape_4d(ctx, attn, q_size,q_size, attn->ne[1], attn->ne[2]);

ggml_tensor *rel_h_4d =
ggml_reshape_4d(ctx, rel_h, 1, q_size, attn->ne[1], attn->ne[2]);

ggml_tensor *rel_h_rep = ggml_repeat(ctx, rel_h_4d, attn_4d); // now same shape as attn_5d

ggml_tensor *rel_w_4d =
ggml_reshape_4d(ctx, rel_w, q_size, 1, attn->ne[1], attn->ne[2]);

ggml_tensor *rel_w_rep = ggml_repeat(ctx, rel_w_4d, attn_4d); // now same shape as attn_5d

ggml_tensor * result = ggml_add(ctx, attn_4d, ggml_add(ctx, rel_h_rep, rel_w_rep));
result = ggml_reshape_3d(ctx, result, attn->ne[0], attn->ne[1], attn->ne[2]);


return result;
}


static ggml_tensor * get_rel_pos(
ggml_context * ctx,
ggml_tensor * rel_pos, // [L, C]
int q_size,
int k_size
) {

const auto dtype = rel_pos->type;

const int64_t L = rel_pos->ne[0]; // length
const int64_t C = rel_pos->ne[1]; // channels

// -------------------------------------------------
// 1) q_idx ← arange(0..q_size-1) [q_size]
// 2) k_idx ← arange(0..k_size-1) [k_size]
// -------------------------------------------------
// attn: [q_h*q_w, k_h*k_w]
// rel_h: [q_h, q_w, k_h]
// rel_w: [q_h, q_w, k_w]

static ggml_tensor * add_rel_pos_inplace(
ggml_context * ctx,
ggml_tensor * attn,
ggml_tensor * rel_w,
ggml_tensor * rel_h
) {
const int k_w = rel_w->ne[0];
const int k_h = rel_h->ne[0];
const int q_w = rel_h->ne[1];
const int q_h = rel_h->ne[2];

ggml_tensor * q_coord = ggml_cast(ctx,
ggml_arange(ctx, 0.0f, static_cast<float>(q_size), 1.0f),
GGML_TYPE_F32); // [q_size]
ggml_tensor * k_coord = ggml_cast(ctx,
ggml_arange(ctx, 0.0f, static_cast<float>(k_size), 1.0f),
GGML_TYPE_F32); // [k_size]
GGML_ASSERT(q_w == rel_w->ne[1]);
GGML_ASSERT(q_h == rel_w->ne[2]);
GGML_ASSERT(attn->ne[0] == k_h*k_w);
GGML_ASSERT(attn->ne[1] == q_h*q_w);

ggml_tensor * rel = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, q_size, k_size);
q_coord = ggml_cont(ctx,ggml_repeat(ctx, q_coord, rel)); // [q_size, k_size]
ggml_tensor *attn_4d = ggml_reshape_4d(ctx, attn, k_w, k_h, attn->ne[1], attn->ne[2]);

// broadcast reshape:
k_coord = ggml_reshape_2d(ctx, k_coord, 1, k_size); // [1, k_size]
k_coord = ggml_cont(ctx,ggml_repeat(ctx, k_coord, rel)); // [q_size, k_size]
ggml_tensor *rel_h_4d = ggml_reshape_4d(ctx, rel_h, 1, k_h, attn->ne[1], attn->ne[2]);

// -------------------------------------------------
// relative_coords = q - k + (k_size - 1) // SAME as PyTorch when no scaling
// -------------------------------------------------
rel = ggml_sub(ctx, k_coord, q_coord); // [q_size, k_size]
ggml_tensor *rel_h_rep = ggml_repeat(ctx, rel_h_4d, attn_4d); // now same shape as attn_5d

rel = ggml_scale_bias(ctx, rel, 1.0f, static_cast<float>(k_size) - 1.0f); // [q_size, k_size]
ggml_tensor *rel_w_4d = ggml_reshape_4d(ctx, rel_w, k_w, 1, attn->ne[1], attn->ne[2]);

// -------------------------------------------------
// clamp to [0, L-1] and cast to int32 (for ggml_get_rows)
// -------------------------------------------------
ggml_tensor *rel_w_rep = ggml_repeat(ctx, rel_w_4d, attn_4d); // now same shape as attn_5d

ggml_tensor * rel_clamped = ggml_clamp(ctx, rel, 0, static_cast<float>(L - 1));
ggml_tensor * result = ggml_add_inplace(ctx, attn_4d, ggml_add_inplace(ctx, rel_h_rep, rel_w_rep));
result = ggml_reshape_3d(ctx, result, attn->ne[0], attn->ne[1], attn->ne[2]);

ggml_tensor * idx_2d = ggml_cast(ctx, rel_clamped, GGML_TYPE_I32); // [q_size, k_size]

// flatten to 1D for ggml_get_rows
const int64_t qk = static_cast<int64_t>(q_size) * static_cast<int64_t>(k_size);
ggml_tensor * idx_flat = ggml_reshape_1d(ctx, idx_2d, qk); // [qk]
return result;
}

// -------------------------------------------------
// Gather from rel_pos → [qk, C]
// -------------------------------------------------
ggml_tensor * gathered = ggml_get_rows(ctx, rel_pos, idx_flat); // [qk, C]

// reshape to final output → [q_size, k_size, C]
ggml_tensor * out = ggml_reshape_3d(ctx, gathered,rel_pos->ne[0],
q_size,
k_size);
static ggml_tensor * get_rel_pos(
ggml_context * ctx,
ggml_tensor * rel_pos, // [L, C]
int q_size,
int k_size
) {
const int64_t C = rel_pos->ne[0]; // channels
const int64_t L = rel_pos->ne[1]; // length

GGML_ASSERT(2*std::max(q_size, k_size) - 1 == L);

// -------------------------------------------------
// 1) q_idx ← arange(0..q_size-1) [q_size]
// 2) k_idx ← arange(0..k_size-1) [k_size]
// -------------------------------------------------

// ggml_arange always returns FP32 tensor
ggml_tensor * q_coord = ggml_arange(ctx, 0.0f, static_cast<float>(q_size), 1.0f); // [q_size]
ggml_tensor * k_coord = ggml_arange(ctx, 0.0f, static_cast<float>(k_size), 1.0f); // [k_size]
ggml_tensor * rel = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, k_size, q_size);

// broadcast reshape:
q_coord = ggml_cont(ctx,
ggml_repeat(ctx,
ggml_reshape_2d(ctx, q_coord, 1, q_size), // [q_size, 1]
rel
)
); // [q_size, k_size]
k_coord = ggml_cont(ctx, ggml_repeat(ctx, k_coord, rel)); // [q_size, k_size]

float q_scale = std::max((float)k_size/q_size, 1.0f);
float k_scale = std::max((float)q_size/k_size, 1.0f);

// This wouldn't be triggered in DeepSeek-OCR. Just for compatibility with
// the original implementation.
if (q_size != k_size) {
q_coord = ggml_scale_inplace(ctx, q_coord, q_scale);
k_coord = ggml_scale_inplace(ctx, k_coord, k_scale);
}

return out; // [q_size, k_size, C]
}
// -------------------------------------------------
// relative_coords = q - k + (k_size - 1) // SAME as PyTorch when no scaling
// -------------------------------------------------

rel = ggml_sub(ctx, q_coord, k_coord); // [q_size, k_size]
rel = ggml_scale_bias(ctx, rel, 1.0f, (k_size - 1.0f)*k_scale); // [q_size, k_size]
// Clamp to [0, L-1] range for valid indexing
rel = ggml_clamp(ctx, rel, 0.0f, static_cast<float>(rel_pos->ne[1] - 1));

// -------------------------------------------------
// clamp to [0, L-1] and cast to int32 (for ggml_get_rows)
// -------------------------------------------------

ggml_tensor * idx_2d = ggml_cast(ctx, rel, GGML_TYPE_I32); // [q_size, k_size]

// Gather from rel_pos → [qk, C]
// -------------------------------------------------

// flatten to 1D for ggml_get_rows
int qk = q_size * k_size;
ggml_tensor * idx_flat = ggml_reshape_1d(ctx, idx_2d, qk); // [qk]
ggml_tensor * gathered = ggml_get_rows(ctx, rel_pos, idx_flat); // [qk, C]

// -------------------------------------------------
// Gather from rel_pos → [qk, C]
// -------------------------------------------------

ggml_tensor * out = ggml_reshape_3d(ctx, gathered, C, k_size, q_size); // [qk, C]


return out; // [q_size, k_size, C]
}

// Implementation based on approach suggested by Acly
// See: https://github.com/ggml-org/llama.cpp/pull/17383#issuecomment-3554227091
static ggml_tensor* window_partition(ggml_context* ctx, ggml_tensor* x, int window) {
auto [c, w, h, b] = x->ne;
// same as
Expand All @@ -2583,6 +2600,8 @@ static ggml_tensor * get_rel_pos(
return x;
}

// Implementation based on approach suggested by Acly
// See: https://github.com/ggml-org/llama.cpp/pull/17383#issuecomment-3554227091
static ggml_tensor* window_unpartition(ggml_context* m, ggml_tensor* x, int w, int h, int window) {
int64_t c = x->ne[0];
// same as
Expand Down Expand Up @@ -4978,7 +4997,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
const int min_num = 2;
const int max_num = 9;
const int image_size = params.image_size; // typically 640
const bool use_thumbnail = true; // mimic python's use_thumbnail
// const bool use_thumbnail = true; // mimic python's use_thumbnail

// original image size
const int orig_w = original_size.width;
Expand Down