Skip to content

CPU RAM consumption steadily increases during TFT training #1369

@jon-huff

Description

@jon-huff
  • PyTorch-Forecasting version: 1.0.0
  • PyTorch version: 2.0.1
  • Python version: 3.10
  • Operating System: Ubuntu 22.04

Expected behavior

TFT training on UCI electricity dataset is coded up per examples using Lightning, train/val datasets fits well within system memory.

Actual behavior

Throughout training, cpu RAM consumption steadily grows until it hits OOM (96gb) and kernel crashes. I have tried disabling logging everywhere I know how within Pytorch-Forecasting and Lightning to no avail. GPU ram consumption stays steady at ~1.2gb

Code to reproduce the problem

max_prediction_length = 24
max_encoder_length = 7*24
batch_size = 64
num_workers=8
split_time_idx = 30000

train_data = TimeSeriesDataSet(data=df[lambda x: x.time_idx < split_time_idx],
                               time_idx='time_idx',
                               target='demand',
                               group_ids=['group_id'],
                               min_encoder_length=max_encoder_length,
                               max_encoder_length=max_encoder_length,
                               min_prediction_length=max_prediction_length,
                               max_prediction_length=max_prediction_length,
                               static_categoricals=['group_id'],
                               time_varying_known_reals=['time_idx', 'hour', 'weekday', 'day', 'month'],
                               time_varying_unknown_reals=['demand'],
                               target_normalizer=GroupNormalizer(groups=['group_id'], transformation='softplus'),
                               add_relative_time_idx=True,
                               add_target_scales=True,
                               randomize_length=False)

val_data = TimeSeriesDataSet.from_dataset(train_data, df[lambda x: x.time_idx >= split_time_idx], stop_randomization=True, predict=False)

train_dataloader = train_data.to_dataloader(train=True, batch_size=batch_size, num_workers=num_workers)
val_dataloader = val_data.to_dataloader(train=False, batch_size=batch_size, num_workers=num_workers)

tft = TemporalFusionTransformer.from_dataset(train_data,
                                             learning_rate=.001,
                                             hidden_size=160,
                                             hidden_continuous_size=160,
                                             attention_head_size=4,
                                             dropout=.1,
                                             output_size=output_size,
                                             loss=quantile_loss,
                                             log_interval=-1,
                                             reduce_on_plateau_patience=4)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions