Skip to content

smaruf/csharp-ai-study

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

C# AI Study - Comprehensive Learning Guide

A comprehensive 3-week learning resource for AI application development using C# and Python, covering machine learning, data engineering, neural networks, and modern AI technologies.

Table of Contents

Prerequisites

Required Knowledge

  • Programming: Basic understanding of C# (.NET Core/5+) and Python (3.8+)
  • Mathematics: Linear algebra, statistics, and calculus fundamentals
  • Development: Git version control, command line usage
  • Concepts: Object-oriented programming, data structures

Recommended Experience

  • Previous work with databases (SQL/NoSQL)
  • Basic understanding of web APIs and HTTP protocols
  • Familiarity with JSON and data serialization
  • Experience with package managers (NuGet, pip)

Hardware Requirements

  • Minimum: 8GB RAM, 50GB free disk space
  • Recommended: 16GB+ RAM, SSD storage, GPU (NVIDIA with CUDA support)

Learning Objectives

By the end of this 3-week program, you will be able to:

  • Develop AI-powered applications using C# and Python
  • Implement neural network models for various use cases
  • Design and build real-time streaming data pipelines
  • Create effective prompt engineering strategies
  • Build data visualization and plotting solutions
  • Design scalable data engineering architectures
  • Implement data warehousing solutions
  • Deploy AI models in production environments

3-Week Learning Plan

Week 1: Foundations

Focus: Core concepts, environment setup, and fundamental implementations

Day 1-2: Environment Setup & AI Fundamentals

Learning Goals:

  • Set up development environment for C# and Python AI development
  • Understand AI/ML terminology and concepts
  • Explore the AI development ecosystem

Activities:

  • Install Visual Studio/VS Code, .NET SDK, Python, and essential packages
  • Complete "Hello World" projects in both C# and Python
  • Study machine learning types: supervised, unsupervised, reinforcement learning

Hands-on Tasks:

// C# - Create a simple linear regression model
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Statistics;

public class SimpleLinearRegression
{
    public (double slope, double intercept) FitLine(double[] x, double[] y)
    {
        // Implementation here
    }
}
# Python - Data exploration with pandas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Load and explore a dataset
df = pd.read_csv('sample_data.csv')
df.describe()

Day 3-4: C# for AI Development

Learning Goals:

  • Master ML.NET framework and ecosystem
  • Understand C# numerical computing libraries
  • Implement basic machine learning algorithms

Key Libraries:

  • ML.NET: Microsoft's machine learning framework
  • Math.NET Numerics: Mathematical library for .NET
  • Accord.NET: Scientific computing framework
  • TensorFlowSharp: TensorFlow bindings for C#

Practice Project: Build a classification model using ML.NET

using Microsoft.ML;
using Microsoft.ML.Data;

public class IrisData
{
    [LoadColumn(0)] public float SepalLength;
    [LoadColumn(1)] public float SepalWidth;
    [LoadColumn(2)] public float PetalLength;
    [LoadColumn(3)] public float PetalWidth;
    [LoadColumn(4)] public string Label;
}

// Train iris classification model
var mlContext = new MLContext();
var dataView = mlContext.Data.LoadFromTextFile<IrisData>("iris.csv", hasHeader: true);

Day 5-6: Python for Data Science & AI

Learning Goals:

  • Master essential Python libraries for AI
  • Understand data manipulation and analysis
  • Implement basic neural networks

Essential Libraries:

  • NumPy: Numerical computing
  • Pandas: Data manipulation and analysis
  • Scikit-learn: Machine learning library
  • TensorFlow/PyTorch: Deep learning frameworks
  • Matplotlib/Seaborn: Data visualization

Practice Project: Build a neural network from scratch

import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

class SimpleNeuralNetwork:
    def __init__(self, input_size, hidden_size, output_size):
        self.W1 = np.random.randn(input_size, hidden_size)
        self.W2 = np.random.randn(hidden_size, output_size)
    
    def forward(self, X):
        self.z1 = np.dot(X, self.W1)
        self.a1 = self.sigmoid(self.z1)
        self.z2 = np.dot(self.a1, self.W2)
        self.a2 = self.sigmoid(self.z2)
        return self.a2

Day 7: Data Visualization & Plotting

Learning Goals:

  • Create compelling data visualizations
  • Understand different chart types and use cases
  • Implement interactive plotting solutions

C# Plotting Tools:

  • OxyPlot: Cross-platform plotting library
  • ScottPlot: Simple plotting library
  • LiveCharts: Animated charts

Python Plotting Tools:

  • Matplotlib: Comprehensive plotting library
  • Seaborn: Statistical data visualization
  • Plotly: Interactive web-based plots
  • Bokeh: Interactive visualization library

Practice Projects:

  • Create a real-time data dashboard
  • Build interactive plots for model performance
  • Design data exploration visualizations

Week 2: Implementation & Integration

Focus: Practical applications, streaming, and prompt engineering

Day 8-9: Prompt Engineering Fundamentals

Learning Goals:

  • Master prompt design techniques
  • Understand large language model interactions
  • Implement effective prompt strategies

Key Concepts:

  • Zero-shot prompting: Getting results without examples
  • Few-shot prompting: Learning from examples
  • Chain-of-thought: Step-by-step reasoning
  • Prompt templates: Reusable prompt structures

Prompt Engineering Techniques:

# Example: Structured prompt for data analysis
prompt_template = """
You are a data scientist analyzing the following dataset:
{dataset_description}

Please provide:
1. Key insights from the data
2. Potential patterns or anomalies
3. Recommendations for further analysis

Dataset sample:
{sample_data}

Analysis:
"""

# C# implementation with semantic kernel
using Microsoft.SemanticKernel;

var kernel = Kernel.CreateBuilder()
    .AddOpenAIChatCompletion("gpt-3.5-turbo", apiKey)
    .Build();

var prompt = """
Analyze this data and provide insights:
{{$data}}
""";

Day 10-11: Real-time Streaming & Processing

Learning Goals:

  • Implement real-time data streaming
  • Build event-driven architectures
  • Handle high-throughput data processing

Streaming Technologies:

  • Apache Kafka: Distributed streaming platform
  • Azure Event Hubs: Cloud-based event streaming
  • Redis Streams: Lightweight streaming
  • SignalR: Real-time web functionality

Implementation Examples:

// C# - Real-time data processing with SignalR
public class DataStreamHub : Hub
{
    public async Task JoinDataStream(string streamName)
    {
        await Groups.AddToGroupAsync(Context.ConnectionId, streamName);
    }
    
    public async Task ProcessData(DataPoint data)
    {
        var result = await _mlModel.PredictAsync(data);
        await Clients.Group("predictions").SendAsync("NewPrediction", result);
    }
}
# Python - Kafka streaming with ML inference
from kafka import KafkaConsumer, KafkaProducer
import json
import numpy as np

consumer = KafkaConsumer('data-stream', 
                        bootstrap_servers=['localhost:9092'],
                        value_deserializer=lambda x: json.loads(x.decode('utf-8')))

for message in consumer:
    data = np.array(message.value['features'])
    prediction = model.predict(data.reshape(1, -1))
    # Send prediction to output stream

Day 12-13: Neural Network Processing (NNP) Design

Learning Goals:

  • Design custom neural network architectures
  • Understand deep learning principles
  • Implement specialized layers and functions

Architecture Patterns:

  • Feedforward Networks: Basic neural networks
  • Convolutional Networks: Image processing
  • Recurrent Networks: Sequential data
  • Transformer Networks: Attention mechanisms

Custom Implementation:

# PyTorch custom neural network
import torch
import torch.nn as nn
import torch.nn.functional as F

class CustomNNP(nn.Module):
    def __init__(self, input_dim, hidden_dims, output_dim):
        super(CustomNNP, self).__init__()
        self.layers = nn.ModuleList()
        
        prev_dim = input_dim
        for hidden_dim in hidden_dims:
            self.layers.append(nn.Linear(prev_dim, hidden_dim))
            self.layers.append(nn.BatchNorm1d(hidden_dim))
            self.layers.append(nn.Dropout(0.2))
            prev_dim = hidden_dim
            
        self.output = nn.Linear(prev_dim, output_dim)
    
    def forward(self, x):
        for layer in self.layers:
            if isinstance(layer, nn.Linear):
                x = F.relu(layer(x))
            else:
                x = layer(x)
        return self.output(x)

Day 14: Memory Databases & In-Memory Computing

Learning Goals:

  • Implement in-memory data structures
  • Understand caching strategies
  • Build high-performance data access layers

Technologies:

  • Redis: In-memory data structure store
  • MemoryDB: Amazon's Redis-compatible service
  • Hazelcast: Distributed in-memory computing
  • System.Memory: .NET memory management

Implementation:

// C# - In-memory caching with IMemoryCache
using Microsoft.Extensions.Caching.Memory;

public class InMemoryMLCache
{
    private readonly IMemoryCache _cache;
    
    public async Task<PredictionResult> GetOrPredict(string key, InputData data)
    {
        if (_cache.TryGetValue(key, out PredictionResult cachedResult))
            return cachedResult;
            
        var result = await _mlModel.PredictAsync(data);
        _cache.Set(key, result, TimeSpan.FromMinutes(10));
        return result;
    }
}

Week 3: Advanced Applications

Focus: Data engineering, warehousing, and production deployment

Day 15-16: Data Engineering Principles

Learning Goals:

  • Design robust data pipelines
  • Implement ETL/ELT processes
  • Handle data quality and validation

Data Engineering Stack:

  • Apache Airflow: Workflow orchestration
  • dbt: Data transformation
  • Apache Spark: Big data processing
  • Azure Data Factory: Cloud ETL service

Pipeline Implementation:

# Python - Data pipeline with Pandas and validation
import pandas as pd
from great_expectations import DataContext

class DataPipeline:
    def __init__(self):
        self.context = DataContext()
    
    def extract(self, source):
        return pd.read_sql(source.query, source.connection)
    
    def transform(self, df):
        # Data cleaning and transformation
        df_clean = df.dropna()
        df_clean['processed_date'] = pd.Timestamp.now()
        return df_clean
    
    def validate(self, df):
        # Data quality checks
        expectation_suite = self.context.get_expectation_suite("data_quality")
        return self.context.run_validation_operator(
            "action_list_operator",
            assets_to_validate=[df],
            run_id="pipeline_run"
        )
    
    def load(self, df, destination):
        df.to_sql('processed_data', destination, if_exists='append')

Day 17-18: Data Warehousing Concepts

Learning Goals:

  • Design dimensional data models
  • Implement star and snowflake schemas
  • Build OLAP cubes and analytics

Data Warehouse Technologies:

  • SQL Server Analysis Services: Microsoft OLAP solution
  • Azure Synapse Analytics: Cloud data warehouse
  • Snowflake: Cloud-native data platform
  • ClickHouse: Columnar database

Schema Design:

-- Star schema example for sales analytics
CREATE TABLE FactSales (
    SaleKey BIGINT IDENTITY(1,1) PRIMARY KEY,
    DateKey INT FOREIGN KEY REFERENCES DimDate(DateKey),
    ProductKey INT FOREIGN KEY REFERENCES DimProduct(ProductKey),
    CustomerKey INT FOREIGN KEY REFERENCES DimCustomer(CustomerKey),
    SalesAmount DECIMAL(10,2),
    Quantity INT,
    UnitPrice DECIMAL(10,2)
);

CREATE TABLE DimProduct (
    ProductKey INT IDENTITY(1,1) PRIMARY KEY,
    ProductID NVARCHAR(50),
    ProductName NVARCHAR(255),
    Category NVARCHAR(100),
    SubCategory NVARCHAR(100)
);

Day 19-20: Model Deployment & MLOps

Learning Goals:

  • Deploy ML models to production
  • Implement CI/CD for ML projects
  • Monitor model performance

MLOps Tools:

  • MLflow: ML lifecycle management
  • Kubeflow: Kubernetes-native ML workflows
  • Azure ML: Cloud ML platform
  • Docker: Containerization

Deployment Example:

# Dockerfile for ML model deployment
FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS base
WORKDIR /app
EXPOSE 80

FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
WORKDIR /src
COPY ["MLModelAPI/MLModelAPI.csproj", "MLModelAPI/"]
RUN dotnet restore "MLModelAPI/MLModelAPI.csproj"

COPY . .
WORKDIR "/src/MLModelAPI"
RUN dotnet build "MLModelAPI.csproj" -c Release -o /app/build
RUN dotnet publish "MLModelAPI.csproj" -c Release -o /app/publish

FROM base AS final
WORKDIR /app
COPY --from=build /app/publish .
ENTRYPOINT ["dotnet", "MLModelAPI.dll"]

Day 21: Integration & Final Project

Learning Goals:

  • Integrate all learned concepts
  • Build a complete AI application
  • Prepare for production deployment

Final Project: End-to-end AI application with:

  • Real-time data ingestion
  • ML model inference
  • Interactive dashboard
  • Data warehousing backend

Project Structure

csharp-ai-study/
├── src/
│   ├── CSharp.AI.Core/              # Core AI libraries and utilities
│   │   ├── Models/                  # ML models and algorithms
│   │   ├── Data/                    # Data access and processing
│   │   └── Utils/                   # Helper utilities
│   ├── CSharp.AI.Web/               # Web API and interfaces
│   │   ├── Controllers/             # API controllers
│   │   ├── Services/                # Business logic
│   │   └── Hubs/                    # SignalR hubs for real-time
│   ├── Python.AI.Scripts/           # Python analysis scripts
│   │   ├── data_processing/         # ETL and data cleaning
│   │   ├── model_training/          # ML model training
│   │   └── visualization/           # Plotting and dashboards
│   └── Streaming.Services/          # Real-time processing
│       ├── Kafka/                   # Kafka consumers/producers
│       └── EventProcessing/         # Event handling logic
├── data/
│   ├── raw/                         # Raw datasets
│   ├── processed/                   # Cleaned and transformed data
│   └── models/                      # Trained model artifacts
├── notebooks/                       # Jupyter notebooks for exploration
├── tests/                           # Unit and integration tests
├── docs/                            # Documentation and guides
└── docker/                          # Container configurations

Recommended Tools & Setup

Development Environment

C# Development

# Install .NET SDK
wget https://dot.net/v1/dotnet-install.sh
chmod +x dotnet-install.sh
./dotnet-install.sh --channel 8.0

# Essential NuGet packages
dotnet add package Microsoft.ML
dotnet add package Microsoft.ML.Vision
dotnet add package Microsoft.ML.TensorFlow
dotnet add package Math.NET.Numerics
dotnet add package Accord.MachineLearning

Python Setup

# Create virtual environment
python -m venv ai-study-env
source ai-study-env/bin/activate  # Linux/Mac
# ai-study-env\Scripts\activate    # Windows

# Install essential packages
pip install numpy pandas scikit-learn tensorflow torch
pip install matplotlib seaborn plotly bokeh
pip install jupyter notebook jupyterlab
pip install great-expectations mlflow
pip install kafka-python redis

Database Setup

# Docker containers for development
docker run -d --name redis-ai -p 6379:6379 redis:alpine
docker run -d --name postgres-ai -p 5432:5432 -e POSTGRES_PASSWORD=password postgres:13
docker run -d --name kafka-ai -p 9092:9092 confluentinc/cp-kafka:latest

IDE and Extensions

Visual Studio Code Extensions

  • C# Dev Kit
  • Python
  • Jupyter
  • Docker
  • GitLens
  • Thunder Client (API testing)

Visual Studio Extensions

  • ML.NET Model Builder
  • Python Tools for Visual Studio
  • Azure Tools

Dataset Recommendations

Beginner-Friendly Datasets

Classification Tasks

  • Iris Dataset: Classic flower classification (150 samples, 4 features)
  • Wine Quality: Predict wine quality based on chemical properties
  • Titanic: Passenger survival prediction
  • MNIST: Handwritten digit recognition (28x28 images)

Regression Tasks

  • Boston Housing: Predict house prices (506 samples, 13 features)
  • California Housing: Larger housing dataset with geographic data
  • Bike Sharing: Predict bike rental demand based on weather/time

Time Series

  • Stock Prices: Historical stock market data
  • Weather Data: Temperature, humidity, pressure over time
  • Sales Forecasting: Retail sales data with seasonality

Intermediate Datasets

Computer Vision

  • CIFAR-10: 32x32 color images in 10 classes (60,000 images)
  • Fashion-MNIST: Clothing items classification
  • Cats vs Dogs: Binary image classification

Natural Language Processing

  • IMDB Movie Reviews: Sentiment analysis (50,000 reviews)
  • 20 Newsgroups: Text classification across topics
  • Twitter Sentiment: Social media sentiment analysis

Recommendation Systems

  • MovieLens: Movie ratings and recommendations
  • Amazon Product Reviews: E-commerce recommendation data
  • Last.fm: Music listening and recommendation data

Advanced Datasets

Large-Scale Vision

  • ImageNet: 1.2M images across 1,000 categories
  • COCO: Object detection and segmentation
  • Open Images: Google's large-scale image dataset

Big Data & Streaming

  • NYC Taxi Data: Large-scale transportation data
  • Wikipedia Clickstream: Web traffic patterns
  • Twitter Stream: Real-time social media data

Domain-Specific

  • Medical Imaging: X-rays, MRI scans (with proper permissions)
  • Financial Data: High-frequency trading data
  • IoT Sensor Data: Industrial sensor readings

Hands-On Projects

Week 1 Projects

Project 1: Smart Data Analyzer

Goal: Build a C# application that analyzes CSV data and provides insights

Features:

  • File upload and parsing
  • Statistical analysis
  • Basic visualizations
  • Export reports

Technologies: C#, Math.NET Numerics, OxyPlot

Project 2: Python ML Pipeline

Goal: Create an end-to-end machine learning pipeline

Features:

  • Data preprocessing
  • Model training and evaluation
  • Hyperparameter tuning
  • Model persistence

Technologies: Python, scikit-learn, pandas, joblib

Week 2 Projects

Project 3: Real-time Sentiment Dashboard

Goal: Build a real-time sentiment analysis dashboard

Features:

  • Live data streaming (Twitter API simulation)
  • Sentiment analysis with prompt engineering
  • Real-time chart updates
  • Alert system for sentiment changes

Technologies: C# (SignalR), Python (sentiment analysis), JavaScript (frontend)

Project 4: Neural Network Playground

Goal: Interactive neural network design and training tool

Features:

  • Visual network architecture builder
  • Real-time training visualization
  • Parameter adjustment controls
  • Performance metrics display

Technologies: Python (PyTorch/TensorFlow), Streamlit/Dash

Week 3 Projects

Project 5: Smart Data Warehouse

Goal: Build a complete data warehousing solution

Features:

  • ETL pipeline automation
  • Dimensional modeling
  • OLAP cube creation
  • Business intelligence dashboard

Technologies: SQL Server/PostgreSQL, dbt, Power BI/Tableau

Project 6: AI-Powered Microservice

Goal: Deploy a scalable AI microservice

Features:

  • RESTful API for ML predictions
  • Model versioning and A/B testing
  • Performance monitoring
  • Auto-scaling capabilities

Technologies: .NET Core, Docker, Kubernetes, MLflow

Capstone Project: Intelligent Data Platform

Goal: Integrate all learned concepts into a comprehensive platform

System Architecture:

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Data Sources  │    │  Stream Proc.   │    │   AI Models     │
│   • APIs        │────│  • Kafka        │────│  • C# ML.NET    │
│   • Databases   │    │  • Redis        │    │  • Python ML    │
│   • Files       │    │  • Event Hubs   │    │  • Deep Learning │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         └───────────────────────┼───────────────────────┘
                                 │
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Data Storage  │    │   Web API       │    │   Visualization │
│   • Data Lake   │    │   • .NET Core   │    │   • React/Blazor│
│   • Data Warehouse│   │   • FastAPI     │    │   • D3.js       │
│   • Vector DB   │    │   • GraphQL     │    │   • Plotly      │
└─────────────────┘    └─────────────────┘    └─────────────────┘

Features:

  • Multi-source data ingestion
  • Real-time and batch processing
  • Multiple ML model deployment
  • Interactive dashboards
  • Natural language querying
  • Automated insights generation

Resources & References

Official Documentation

Books

  • C# AI Development:

    • "Hands-On Machine Learning with ML.NET" by Jarred Capellman
    • "C# Machine Learning Projects" by Yoon Hyup Hwang
  • Python AI/ML:

    • "Hands-On Machine Learning" by Aurélien Géron
    • "Python Machine Learning" by Sebastian Raschka
  • Data Engineering:

    • "Designing Data-Intensive Applications" by Martin Kleppmann
    • "The Data Warehouse Toolkit" by Ralph Kimball

Online Courses

  • Microsoft Learn: AI and Machine Learning paths
  • Coursera: Machine Learning by Andrew Ng
  • edX: MIT Introduction to Machine Learning
  • Udacity: Machine Learning Engineer Nanodegree
  • Pluralsight: C# and Python AI tracks

Blogs and Communities

  • Medium: Towards Data Science publication
  • Reddit: r/MachineLearning, r/datascience, r/csharp
  • Stack Overflow: AI/ML tagged questions
  • GitHub: Awesome Machine Learning repositories

Conferences and Events

  • Microsoft Build: Annual developer conference
  • PyCon: Python community conference
  • NeurIPS: Premier AI research conference
  • Strata Data Conference: Data science and engineering

Tools and Platforms

  • Cloud Platforms:

    • Azure Machine Learning
    • AWS SageMaker
    • Google Cloud AI Platform
  • Development Tools:

    • Jupyter Notebooks
    • Apache Zeppelin
    • Databricks
  • Collaboration:

    • GitHub/GitLab
    • MLflow
    • Weights & Biases

Contributing

We welcome contributions from learners and experts alike! Here's how you can contribute:

Ways to Contribute

Content Contributions

  • Learning Resources: Add new tutorials, examples, or explanations
  • Code Samples: Contribute working code examples for different concepts
  • Dataset Recommendations: Suggest new datasets for practice
  • Project Ideas: Propose new hands-on projects

Technical Contributions

  • Bug Fixes: Fix issues in existing code samples
  • Performance Improvements: Optimize existing implementations
  • New Features: Add new functionality to example projects
  • Documentation: Improve existing documentation

Contribution Guidelines

Getting Started

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/your-feature-name
  3. Make your changes following our coding standards
  4. Test your changes thoroughly
  5. Submit a pull request with a clear description

Coding Standards

C# Code:

// Use PascalCase for public members
public class DataProcessor
{
    // Use camelCase for private fields
    private readonly ILogger _logger;
    
    // Add XML documentation for public methods
    /// <summary>
    /// Processes the input data and returns predictions
    /// </summary>
    /// <param name="inputData">The data to process</param>
    /// <returns>Prediction results</returns>
    public async Task<PredictionResult> ProcessAsync(InputData inputData)
    {
        // Implementation
    }
}

Python Code:

# Follow PEP 8 style guidelines
class DataProcessor:
    """Process data for machine learning tasks."""
    
    def __init__(self, model_path: str):
        """Initialize the processor with model path."""
        self.model_path = model_path
        self.model = None
    
    def process_data(self, data: pd.DataFrame) -> np.ndarray:
        """Process input data and return predictions.
        
        Args:
            data: Input DataFrame with features
            
        Returns:
            Array of predictions
        """
        # Implementation
        pass

Documentation Standards

  • Use clear, concise language
  • Include code examples for complex concepts
  • Add links to relevant resources
  • Ensure examples are tested and working

Community Guidelines

  • Be respectful and inclusive
  • Help others learn and grow
  • Share knowledge generously
  • Provide constructive feedback

Getting Help

  • Issues: Report bugs or request features via GitHub Issues
  • Discussions: Join community discussions in GitHub Discussions
  • Discord: Join our learning community (link in repository)
  • Office Hours: Weekly virtual help sessions (see calendar)

Recognition

Contributors will be recognized in:

  • README contributors section
  • Annual contributor awards
  • Speaking opportunities at meetups
  • Recommendation letters for outstanding contributors

License: This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.

Disclaimer: This educational resource is for learning purposes. Always follow best practices and security guidelines when implementing AI solutions in production environments.

About

Learning resource on AI based application with C# and Python including memory Db

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •