Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
311 changes: 156 additions & 155 deletions dsp/modules/databricks.py
Original file line number Diff line number Diff line change
@@ -1,158 +1,159 @@
# import logging
# from logging.handlers import RotatingFileHandler

# # Configure logging
# logging.basicConfig(
# level=logging.INFO,
# format='%(message)s',
# handlers=[
# logging.FileHandler('openai_usage.log')
# ]
# )

# import functools
# import json
# from typing import Any, Literal, Optional, cast

# import dsp
# import backoff
# import openai
# from openai import OpenAI

# from dsp.modules.cache_utils import CacheMemory, NotebookCacheMemory, cache_turn_on
# from dsp.modules.gpt3 import GPT3

# try:
# from openai.openai_object import OpenAIObject
# import openai.error
# ERRORS = (openai.error.RateLimitError, openai.error.ServiceUnavailableError, openai.error.APIError)
# except Exception:
# ERRORS = (openai.RateLimitError, openai.APIError)
# OpenAIObject = dict


# def backoff_hdlr(details):
# """Handler from https://pypi.org/project/backoff/"""
# print(
# "Backing off {wait:0.1f} seconds after {tries} tries "
# "calling function {target} with kwargs "
# "{kwargs}".format(**details)
# )

# class Databricks(GPT3):
# """Wrapper around DSPy's OpenAI Wrapper. Supports Databricks Model Serving Endpoints for OpenAI SDK on both Chat, Completions, and Embeddings models.

# Args:
# model (str, required): Databricks-hosted LLM model to use.
# api_key (Optional[str], optional): Databricks authentication token. Defaults to None.
# api_base (Optional[str], optional): Databricks model serving endpoint. Defaults to None.
# model_type (Literal["chat", "text"], optional): The type of model that was specified. Mainly to decide the optimal prompting strategy. Defaults to "text".
# **kwargs: Additional arguments to pass to the OpenAI API provider.
# """

# def __init__(
# self,
# model: str,
# api_key: Optional[str] = None,
# api_base: Optional[str] = None,
# model_type: Literal["chat", "text", "embeddings"] = None,
# **kwargs,
# ):
# super().__init__(
# model=model,
# api_key=api_key,
# api_provider="openai",
# api_base=api_base,
# model_type=model_type,
# **kwargs,
# )

# self.kwargs.pop('frequency_penalty', None)
# self.kwargs.pop('presence_penalty', None)

# def basic_request(self, prompt: str, **kwargs):
# raw_kwargs = kwargs

# kwargs = {**self.kwargs, **kwargs}
# if self.model_type == "chat":
# kwargs["messages"] = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}]
# kwargs = {"stringify_request": json.dumps(kwargs)}
# response = custom_client_chat_request(**kwargs).json()
# response = json.loads(response)
# else:
# kwargs["prompt"] = prompt
# response = custom_client_completions_request(**kwargs).json()
# response = json.loads(response)
import logging
from logging.handlers import RotatingFileHandler

# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
handlers=[
logging.FileHandler('openai_usage.log')
]
)

import functools
import json
from typing import Any, Literal, Optional, cast

import dsp
import backoff
import openai

from dsp.modules.cache_utils import CacheMemory, NotebookCacheMemory, cache_turn_on
from dsp.modules.gpt3 import GPT3

try:
from openai.openai_object import OpenAIObject
import openai.error
ERRORS = (openai.error.RateLimitError, openai.error.ServiceUnavailableError, openai.error.APIError)
except Exception:
ERRORS = (openai.RateLimitError, openai.APIError)
OpenAIObject = dict


def backoff_hdlr(details):
"""Handler from https://pypi.org/project/backoff/"""
print(
"Backing off {wait:0.1f} seconds after {tries} tries "
"calling function {target} with kwargs "
"{kwargs}".format(**details)
)

class Databricks(GPT3):
"""Wrapper around DSPy's OpenAI Wrapper. Supports Databricks Model Serving Endpoints for OpenAI SDK on both Chat, Completions, and Embeddings models.

Args:
model (str, required): Databricks-hosted LLM model to use.
api_key (Optional[str], optional): Databricks authentication token. Defaults to None.
api_base (Optional[str], optional): Databricks model serving endpoint. Defaults to None.
model_type (Literal["chat", "text"], optional): The type of model that was specified. Mainly to decide the optimal prompting strategy. Defaults to "text".
**kwargs: Additional arguments to pass to the OpenAI API provider.
"""

def __init__(
self,
model: str,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
model_type: Literal["chat", "text", "embeddings"] = None,
**kwargs,
):
super().__init__(
model=model,
api_key=api_key,
api_provider="openai",
api_base=api_base,
model_type=model_type,
**kwargs,
)

self.kwargs.pop('frequency_penalty', None)
self.kwargs.pop('presence_penalty', None)

def basic_request(self, prompt: str, **kwargs):
raw_kwargs = kwargs

kwargs = {**self.kwargs, **kwargs}
if self.model_type == "chat":
kwargs["messages"] = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}]
kwargs = {"stringify_request": json.dumps(kwargs)}
response = custom_client_chat_request(**kwargs).json()
response = json.loads(response)
else:
kwargs["prompt"] = prompt
response = custom_client_completions_request(**kwargs).json()
response = json.loads(response)

# history = {
# "prompt": prompt,
# "response": response,
# "kwargs": kwargs,
# "raw_kwargs": raw_kwargs,
# }
# self.history.append(history)
# return response
history = {
"prompt": prompt,
"response": response,
"kwargs": kwargs,
"raw_kwargs": raw_kwargs,
}
self.history.append(history)
return response

# def embeddings(self, prompt: str, **kwargs):
# kwargs = {**self.kwargs, **kwargs}
# kwargs["input"] = prompt
# kwargs.pop('temperature', None)
# kwargs.pop('max_tokens', None)
# kwargs.pop('top_p', None)
# kwargs.pop('n', None)
# response = custom_client_embeddings_request(**kwargs).json()
# response = json.loads(response)
# embeddings = [cur_obj['embedding'] for cur_obj in response['data']][0]
# return embeddings
def embeddings(self, prompt: str, **kwargs):
kwargs = {**self.kwargs, **kwargs}
kwargs["input"] = prompt
kwargs.pop('temperature', None)
kwargs.pop('max_tokens', None)
kwargs.pop('top_p', None)
kwargs.pop('n', None)
response = custom_client_embeddings_request(**kwargs).json()
response = json.loads(response)
embeddings = [cur_obj['embedding'] for cur_obj in response['data']][0]
return embeddings

# def __call__(self, prompt: str, **kwargs):
# if self.model_type == "embeddings":
# return self.embeddings(prompt, **kwargs)
# else:
# return super().__call__(prompt, **kwargs)

# def create_custom_client():
# client = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
# return client

# def custom_client_chat_request(**kwargs):
# return cached_custom_client_chat_request_v2_wrapped(**kwargs)

# def custom_client_embeddings_request(**kwargs):
# return cached_custom_client_embeddings_request_v2_wrapped(**kwargs)

# def custom_client_completions_request(**kwargs):
# return cached_custom_client_completions_request_v2_wrapped(**kwargs)


# @CacheMemory.cache
# def cached_custom_client_chat_request_v2(**kwargs):
# client = create_custom_client()
# return client.chat.completions.create(**kwargs)

# @functools.lru_cache(maxsize=None if cache_turn_on else 0)
# @NotebookCacheMemory.cache
# def cached_custom_client_chat_request_v2_wrapped(**kwargs):
# if "stringify_request" in kwargs:
# kwargs = json.loads(kwargs["stringify_request"])
# return cached_custom_client_chat_request_v2(**kwargs)

# @CacheMemory.cache
# def cached_custom_client_completions_request_v2(**kwargs):
# client = create_custom_client()
# return client.completions.create(**kwargs)

# @functools.lru_cache(maxsize=None if cache_turn_on else 0)
# @NotebookCacheMemory.cache
# def cached_custom_client_completions_request_v2_wrapped(**kwargs):
# return cached_custom_client_completions_request_v2(**kwargs)

# @CacheMemory.cache
# def cached_custom_client_embeddings_request_v2(**kwargs):
# client = create_custom_client()
# return client.embeddings.create(**kwargs)

# @functools.lru_cache(maxsize=None if cache_turn_on else 0)
# @NotebookCacheMemory.cache
# def cached_custom_client_embeddings_request_v2_wrapped(**kwargs):
# return cached_custom_client_embeddings_request_v2(**kwargs)
def __call__(self, prompt: str, **kwargs):
if self.model_type == "embeddings":
return self.embeddings(prompt, **kwargs)
else:
return super().__call__(prompt, **kwargs)

def create_custom_client():
from openai import OpenAI

client = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
return client

def custom_client_chat_request(**kwargs):
return cached_custom_client_chat_request_v2_wrapped(**kwargs)

def custom_client_embeddings_request(**kwargs):
return cached_custom_client_embeddings_request_v2_wrapped(**kwargs)

def custom_client_completions_request(**kwargs):
return cached_custom_client_completions_request_v2_wrapped(**kwargs)


@CacheMemory.cache
def cached_custom_client_chat_request_v2(**kwargs):
client = create_custom_client()
return client.chat.completions.create(**kwargs)

@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def cached_custom_client_chat_request_v2_wrapped(**kwargs):
if "stringify_request" in kwargs:
kwargs = json.loads(kwargs["stringify_request"])
return cached_custom_client_chat_request_v2(**kwargs)

@CacheMemory.cache
def cached_custom_client_completions_request_v2(**kwargs):
client = create_custom_client()
return client.completions.create(**kwargs)

@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def cached_custom_client_completions_request_v2_wrapped(**kwargs):
return cached_custom_client_completions_request_v2(**kwargs)

@CacheMemory.cache
def cached_custom_client_embeddings_request_v2(**kwargs):
client = create_custom_client()
return client.embeddings.create(**kwargs)

@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def cached_custom_client_embeddings_request_v2_wrapped(**kwargs):
return cached_custom_client_embeddings_request_v2(**kwargs)
2 changes: 1 addition & 1 deletion dspy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
settings = dsp.settings

OpenAI = dsp.GPT3
# Databricks = dsp.Databricks
Databricks = dsp.Databricks
Cohere = dsp.Cohere
ColBERTv2 = dsp.ColBERTv2
Pyserini = dsp.PyseriniRetriever
Expand Down