Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
215 changes: 215 additions & 0 deletions lib/node_modules/@stdlib/ndarray/map/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
<!--

@license Apache-2.0

Copyright (c) 2024 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# map

> Apply a callback function to elements in an input [ndarray][@stdlib/ndarray/ctor] and assign results to elements in a new output [ndarray][@stdlib/ndarray/ctor].

<section class="intro">

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var map = require( '@stdlib/ndarray/map' );
```

#### map( x\[, options], fcn\[, thisArg] )

Applies a callback function to elements in an input [ndarray][@stdlib/ndarray/ctor] and assigns results to elements in a new output [ndarray][@stdlib/ndarray/ctor].

<!-- eslint-disable max-len -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );

function scale( z ) {
return z * 10.0;
}

var buffer = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var shape = [ 2, 3 ];
var strides = [ 6, 1 ];
var offset = 1;

var x = ndarray( 'float64', buffer, shape, strides, offset, 'row-major' );
// returns <ndarray>

var y = map( x, scale );
// returns <ndarray>

var arr = ndarray2array( y );
// returns [ [ 20.0, 30.0, 40.0 ], [ 80.0, 90.0, 100.0 ] ]
```

The function accepts the following arguments:

- **x**: input [ndarray][@stdlib/ndarray/ctor].
- **options**: function options.
- **fcn**: callback to apply.
- **thisArg**: callback execution context.

The function accepts the following options:

- **dtype**: output ndarray [data type][@stdlib/ndarray/dtypes]. If not specified, the output ndarray [data type][@stdlib/ndarray/dtypes] is inferred from the input [ndarray][@stdlib/ndarray/ctor].

By default, the output ndarray [data type][@stdlib/ndarray/dtypes] is inferred from the input [ndarray][@stdlib/ndarray/ctor]. To return an ndarray with a different [data type][@stdlib/ndarray/dtypes], specify the `dtype` option.

<!-- eslint-disable max-len -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var dtype = require( '@stdlib/ndarray/dtype' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );

function scale( z ) {
return z * 10.0;
}

var buffer = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var shape = [ 2, 3 ];
var strides = [ 6, 1 ];
var offset = 1;

var x = ndarray( 'float64', buffer, shape, strides, offset, 'row-major' );
// returns <ndarray>

var opts = {
'dtype': 'float32'
};
var y = map( x, opts, scale );
// returns <ndarray>

var dt = dtype( y );
// returns 'float32'

var arr = ndarray2array( y );
// returns [ [ 20.0, 30.0, 40.0 ], [ 80.0, 90.0, 100.0 ] ]
```

The callback function is provided the following arguments:

- **values**: current array element.
- **indices**: current array element indices.
- **arr**: the input [ndarray][@stdlib/ndarray/ctor].

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- The function does **not** perform explicit casting (e.g., from a real-valued floating-point number to a complex floating-point number). Any such casting should be performed by a provided callback function.

<!-- eslint-disable max-len -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );

function toComplex( z ) {
return new Complex128( z, 0.0 );
}

var buffer = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var shape = [ 2, 3 ];
var strides = [ 6, 1 ];
var offset = 1;

var x = ndarray( 'float64', buffer, shape, strides, offset, 'row-major' );
// returns <ndarray>

var opts = {
'dtype': 'complex128'
};
var y = map( x, opts, toComplex );
// returns <ndarray>
```

- For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before applying a callback function in order to achieve better performance.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var abs = require( '@stdlib/math/base/special/abs' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );
var naryFunction = require( '@stdlib/utils/nary-function' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var map = require( '@stdlib/ndarray/map' );

var buffer = discreteUniform( 10, -100, 100, {
'dtype': 'generic'
});
var shape = [ 5, 2 ];
var strides = [ 2, 1 ];
var offset = 0;
var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );
console.log( ndarray2array( x ) );

var y = map( x, naryFunction( abs, 1 ) );
console.log( ndarray2array( y ) );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<section class="links">

[@stdlib/ndarray/ctor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/ctor

[@stdlib/ndarray/dtypes]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/dtypes

<!-- <related-links> -->

<!-- </related-links> -->

</section>

<!-- /.links -->
138 changes: 138 additions & 0 deletions lib/node_modules/@stdlib/ndarray/map/benchmark/benchmark.1d.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var identity = require( '@stdlib/math/base/special/identity' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var shape2strides = require( '@stdlib/ndarray/base/shape2strides' );
var ndarray = require( '@stdlib/ndarray/ctor' );
var pkg = require( './../package.json' ).name;
var map = require( './../lib' );


// VARIABLES //

var xtypes = [ 'generic' ];
var ytypes = [ 'float64' ];
var orders = [ 'row-major', 'column-major' ];


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - array length
* @param {NonNegativeIntegerArray} shape - ndarray shape
* @param {string} xtype - input ndarray data type
* @param {string} ytype - output ndarray data type
* @param {string} order - ndarray memory layout
* @returns {Function} benchmark function
*/
function createBenchmark( len, shape, xtype, ytype, order ) {
var strides;
var opts;
var xbuf;
var x;

xbuf = discreteUniform( len, -100, 100, {
'dtype': xtype
});
strides = shape2strides( shape, order );
x = ndarray( xtype, xbuf, shape, strides, 0, order );
opts = {
'dtype': ytype
};

return benchmark;

/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var y;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = map( x, opts, identity );
if ( isnan( y.data[ i%len ] ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( !isndarrayLike( y ) ) {
b.fail( 'should return an ndarray' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var ord;
var sh;
var t1;
var t2;
var f;
var i;
var j;
var k;

min = 1; // 10^min
max = 6; // 10^max

for ( k = 0; k < orders.length; k++ ) {
ord = orders[ k ];
for ( j = 0; j < xtypes.length; j++ ) {
t1 = xtypes[ j ];
t2 = ytypes[ j ];
for ( i = min; i <= max; i++ ) {
len = pow( 10, i );

sh = [ len ];
f = createBenchmark( len, sh, t1, t2, ord );
bench( pkg+':ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+ord+',yorder='+ord+',xtype='+t1+',ytype='+t2, f );
}
}
}
}

main();
Loading
Loading