Skip to content

[SR-5583] Swift compiler chokes on complex expressions #48155

@swift-ci

Description

@swift-ci
Previous ID SR-5583
Radar rdar://problem/33627488
Original Reporter lastdodo (JIRA User)
Type Bug
Environment

x86_64-apple-macosx10.9

Additional Detail from JIRA
Votes 0
Component/s Compiler
Labels Bug, 4.0Regression, TypeChecker
Assignee None
Priority Medium

md5: 2124e8902c4a15a09b59388a752aa3d3

Issue Description:

Currently I am working on a vector library in swift and have a problem with the Swift-compiler that ships with the 4th beta of Xcode 9.

Apple Swift version 4.0 (swiftlang-900.0.54.11 clang-900.0.31)
Target: x86_64-apple-macosx10.9

It has a problem compiling the methods that calculate the inverse and determinant of the matrix.

//
//  matrix.swift
//  illum
//
//  Created by Anuschah Akbar-Rabii on 19.04.17.
//
//

import Foundation

public struct MatrixNxM<T> {
    var m: [T]
    private let xdim : Int
    private let ydim : Int
    
    subscript(i: Int, j: Int) -> T {
        get {
            precondition(i*xdim + j < self.m.count, "Index out of matrix bounds \(i) \(j)")
            
            return self.m[i*xdim + j]
        }
        set {
            self.m[i*xdim + j] = newValue
        }
    }
    
    public init(xdim: Int, ydim: Int) {
        self.xdim = xdim
        self.ydim = ydim
        self.m = [Any](repeating: 0.0, count: xdim*ydim) as! [T]
    }
}

public struct Matrix4x4 {
    var m: [Double]
    
    subscript(i: Int, j: Int) -> Double {
        get {
            precondition(i*4 + j < self.m.count, "Index out of matrix bounds \(i) \(j)")
            
            return self.m[i*4 + j]
        }
        set {
            self.m[i*4 + j] = newValue
        }
    }
    
    public init() {
        m = [Double](repeating: 0.0, count: 16)
    }
    
    public static func identity() -> Matrix4x4 {
        var identity = Matrix4x4()
    
        identity[0,0] = 1.0;
        identity[1,1] = 1.0;
        identity[2,2] = 1.0;
        identity[3,3] = 1.0;
    
        return identity
    }
    
    public func determinant() -> Double {
        let det = self[0,0] * self[1,1] * self[2,2] * self[3,3] +
            self[0,0] * self[1,2] * self[2,3] * self[3,1] +
            self[0,0] * self[1,3] * self[2,1] * self[3,2] +
            
            self[0,1] * self[1,0] * self[2,3] * self[3,2] +
            self[0,1] * self[1,2] * self[2,1] * self[3,3] +
            self[0,1] * self[1,3] * self[2,2] * self[3,0] +
            
            self[0,2] * self[1,0] * self[2,1] * self[3,3] +
            self[0,2] * self[1,1] * self[2,3] * self[3,0] +
            self[0,2] * self[1,3] * self[2,0] * self[3,0] +
            
            self[0,3] * self[1,0] * self[2,2] * self[3,1] +
            self[0,3] * self[1,1] * self[2,0] * self[3,2] +
            self[0,3] * self[1,2] * self[2,1] * self[3,0] -
            
            self[0,0] * self[1,1] * self[2,3] * self[3,2] -
            self[0,0] * self[1,2] * self[2,1] * self[3,3] -
            self[0,0] * self[1,3] * self[2,2] * self[3,1] -
            
            self[0,1] * self[1,0] * self[2,2] * self[3,3] -
            self[0,1] * self[1,2] * self[2,3] * self[3,0] -
            self[0,1] * self[1,3] * self[2,0] * self[3,2] -
            
            self[0,2] * self[1,0] * self[2,3] * self[3,1] -
            self[0,2] * self[1,1] * self[2,0] * self[3,3] -
            self[0,2] * self[1,3] * self[2,1] * self[3,0] -
            
            self[0,3] * self[1,0] * self[2,1] * self[3,2] -
            self[0,3] * self[1,1] * self[2,2] * self[3,0] -
            self[0,3] * self[1,2] * self[2,0] * self[3,1]
        
        return det
    }
    
    public func inverse() -> Matrix4x4 {
        let det = self.determinant()
        precondition(det != 0, "Determinant is zero, unable to calculate inverse Matrix")
        
        let inv_det = 1.0 / det
        var inverse = Matrix4x4()
        
        inverse[0, 0] = (self[1,1] * self[2,2] * self[3,3] +
            self[1,2] * self[2,3] * self[3,1] +
            self[1,3] * self[2,1] * self[3,2] -
            self[1,1] * self[2,3] * self[3,2] -
            self[1,2] * self[2,1] * self[3,3] -
            self[1,3] * self[2,2] * self[3,1]) * inv_det;
        
        inverse[0, 1] = (self[0,1] * self[2,3] * self[3,2] +
            self[0,2] * self[2,1] * self[3,3] +
            self[1,3] * self[2,2] * self[3,1] -
            self[0,1] * self[2,2] * self[3,3] -
            self[0,2] * self[2,3] * self[3,1] -
            self[0,3] * self[2,1] * self[3,2]) * inv_det;
        
        inverse[0, 2] = (self[0,1] * self[1,2] * self[3,3] +
            self[0,2] * self[1,3] * self[3,1] +
            self[0,3] * self[1,1] * self[3,2] -
            self[0,1] * self[1,3] * self[3,2] -
            self[0,2] * self[1,1] * self[3,3] -
            self[0,3] * self[1,2] * self[3,1]) * inv_det;
        
        inverse[0, 3] = (self[0,1] * self[1,3] * self[2,2] +
            self[0,2] * self[1,1] * self[2,3] +
            self[0,3] * self[1,2] * self[2,1] -
            self[0,1] * self[1,2] * self[2,3] -
            self[0,2] * self[1,3] * self[2,1] -
            self[0,3] * self[1,1] * self[2,2]) * inv_det;
        
        inverse[1, 0] = (self[1,0] * self[2,3] * self[3,2] +
            self[1,2] * self[2,0] * self[3,3] +
            self[1,3] * self[2,2] * self[3,1] -
            self[1,0] * self[2,2] * self[3,3] -
            self[1,2] * self[2,3] * self[3,1] -
            self[1,3] * self[2,0] * self[3,2]) * inv_det;
        
        inverse[1, 1] = (self[0,0] * self[2,2] * self[3,3] +
            self[0,2] * self[2,3] * self[3,1] +
            self[0,3] * self[2,0] * self[3,2] -
            self[0,0] * self[2,3] * self[3,2] -
            self[0,2] * self[2,0] * self[3,3] -
            self[0,3] * self[2,2] * self[3,0]) * inv_det;
        
        
        inverse[1, 2] = (self[0,0] * self[1,3] * self[3,2] +
            self[0,2] * self[1,0] * self[3,3] +
            self[0,3] * self[1,2] * self[3,1] -
            self[0,0] * self[1,2] * self[3,3] -
            self[0,2] * self[1,3] * self[3,0] -
            self[0,3] * self[1,0] * self[3,2]) * inv_det;
        
        inverse[1, 3] = (self[0,0] * self[1,2] * self[2,3] +
            self[0,2] * self[1,3] * self[2,2] +
            self[0,3] * self[1,0] * self[2,2] -
            self[0,0] * self[1,3] * self[2,2] -
            self[0,2] * self[1,0] * self[2,3] -
            self[0,3] * self[1,2] * self[2,0]) * inv_det;
        
        inverse[2, 0] = (self[1,0] * self[2,1] * self[3,3] +
            self[1,1] * self[2,3] * self[3,1] +
            self[1,3] * self[2,1] * self[3,2] -
            self[1,0] * self[2,3] * self[3,1] -
            self[1,1] * self[2,0] * self[3,3] -
            self[1,3] * self[2,1] * self[3,0]) * inv_det;
        
        inverse[2, 1] = (self[0,0] * self[2,3] * self[3,1] +
            self[0,1] * self[2,0] * self[3,3] +
            self[0,3] * self[2,1] * self[3,1] -
            self[0,0] * self[2,1] * self[3,3] -
            self[0,1] * self[2,3] * self[3,0] -
            self[0,3] * self[2,0] * self[3,1]) * inv_det;
        
        inverse[2, 2] = (self[0,0] * self[1,1] * self[3,3] +
            self[0,1] * self[1,3] * self[3,0] +
            self[0,3] * self[1,0] * self[3,1] -
            self[0,0] * self[1,3] * self[3,1] -
            self[0,1] * self[1,0] * self[3,3] -
            self[0,3] * self[1,1] * self[3,0]) * inv_det;
        
        inverse[2, 3] = (self[0,0] * self[1,3] * self[2,1] +
            self[0,1] * self[1,0] * self[2,3] +
            self[0,3] * self[1,1] * self[2,0] -
            self[0,0] * self[1,1] * self[2,3] -
            self[0,1] * self[1,3] * self[2,0] -
            self[0,3] * self[1,0] * self[2,1]) * inv_det;
        
        inverse[3, 0] = (self[1,0] * self[2,2] * self[3,1] +
            self[1,1] * self[2,0] * self[3,2] +
            self[1,2] * self[2,1] * self[3,0] -
            self[1,0] * self[2,1] * self[3,2] -
            self[1,1] * self[2,2] * self[3,0] -
            self[1,2] * self[2,0] * self[3,1]) * inv_det;
        
        inverse[3, 1] = (self[0,0] * self[2,1] * self[3,2] +
            self[0,1] * self[2,2] * self[3,0] +
            self[0,2] * self[2,0] * self[3,2] -
            self[0,0] * self[2,2] * self[3,1] -
            self[0,1] * self[2,0] * self[3,2] -
            self[0,2] * self[2,1] * self[3,0]) * inv_det;
        
        inverse[3, 2] = (self[0,0] * self[1,2] * self[3,1] +
            self[0,1] * self[1,0] * self[3,2] +
            self[0,2] * self[1,1] * self[3,0] -
            self[0,0] * self[1,1] * self[3,2] -
            self[0,1] * self[1,2] * self[3,0] -
            self[0,2] * self[1,0] * self[3,1]) * inv_det;
        
        inverse[3, 3] = (self[0,0] * self[1,1] * self[2,2] +
            self[0,1] * self[1,2] * self[2,0] +
            self[0,2] * self[2,1] * self[2,1] -
            self[0,0] * self[1,2] * self[2,1] -
            self[0,1] * self[1,0] * self[2,2] -
            self[0,2] * self[1,1] * self[2,0]) * inv_det;
        
        return inverse
    }
}

public func * (a: Matrix4x4, b: Matrix4x4) -> Matrix4x4 {
    var c = Matrix4x4();
    
    for i in 0..<4 {
        for j in 0..<4 {
            var ab: Double = 0.0;
            for k in 0..<4 {
                ab += a[i,k] * b[k,j];
            }
            
            c[i, j] = ab;
        }
    }
    
    return c
}

The errors I get are

Sources/illumLib/matrix.swift:93:59: error: expression was too complex to be solved in reasonable time; consider breaking up the expression into distinct sub-expressions

This piece of code worked well with the swift3(.e.g. Xcode 8.3.3) compilers and the first and second Xcode 9 betas
The only way around this is splitting the calculation into multiple parts.

Metadata

Metadata

Assignees

No one assigned

    Type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions