Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
275 changes: 236 additions & 39 deletions your-code/main.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,13 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": []
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
Expand All @@ -41,10 +44,32 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 5.7\n",
"1 75.2\n",
"2 74.4\n",
"3 84.0\n",
"4 66.5\n",
"5 66.3\n",
"6 55.8\n",
"7 75.7\n",
"8 29.1\n",
"9 43.7\n",
"dtype: float64\n"
]
}
],
"source": [
"lst = [5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7]\n",
"panda_series = pd.Series(lst)\n",
"print (panda_series)"
]
},
{
"cell_type": "markdown",
Expand All @@ -57,10 +82,22 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"74.4\n"
]
}
],
"source": [
"value_3 = panda_series[2]\n",
"\n",
"print(value_3)"
]
},
{
"cell_type": "markdown",
Expand All @@ -71,7 +108,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -89,10 +126,32 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 0 1 2 3 4\n",
"0 53.1 95.0 67.5 35.0 78.4\n",
"1 61.3 40.8 30.8 37.8 87.6\n",
"2 20.6 73.2 44.2 14.6 91.8\n",
"3 57.4 0.1 96.1 4.2 69.5\n",
"4 83.6 20.5 85.4 22.8 35.9\n",
"5 49.0 69.0 0.1 31.8 89.1\n",
"6 23.3 40.7 95.0 83.8 26.9\n",
"7 27.6 26.4 53.8 88.8 68.5\n",
"8 96.6 96.4 53.4 72.4 50.1\n",
"9 73.7 39.0 43.2 81.6 34.7\n"
]
}
],
"source": [
"data_frame = pd.DataFrame(b)\n",
"\n",
"print(data_frame)"
]
},
{
"cell_type": "markdown",
Expand All @@ -103,7 +162,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -112,10 +171,32 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Score_1 Score_2 Score_3 Score_4 Score_5\n",
"0 53.1 95.0 67.5 35.0 78.4\n",
"1 61.3 40.8 30.8 37.8 87.6\n",
"2 20.6 73.2 44.2 14.6 91.8\n",
"3 57.4 0.1 96.1 4.2 69.5\n",
"4 83.6 20.5 85.4 22.8 35.9\n",
"5 49.0 69.0 0.1 31.8 89.1\n",
"6 23.3 40.7 95.0 83.8 26.9\n",
"7 27.6 26.4 53.8 88.8 68.5\n",
"8 96.6 96.4 53.4 72.4 50.1\n",
"9 73.7 39.0 43.2 81.6 34.7\n"
]
}
],
"source": [
"data_frame = pd.DataFrame(b)\n",
"data_frame.rename(columns={0: 'Score_1', 1: 'Score_2', 2: 'Score_3', 3: 'Score_4', 4: 'Score_5'}, inplace=True)\n",
"print (data_frame)"
]
},
{
"cell_type": "markdown",
Expand All @@ -126,10 +207,32 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Score_1 Score_3 Score_5\n",
"0 53.1 67.5 78.4\n",
"1 61.3 30.8 87.6\n",
"2 20.6 44.2 91.8\n",
"3 57.4 96.1 69.5\n",
"4 83.6 85.4 35.9\n",
"5 49.0 0.1 89.1\n",
"6 23.3 95.0 26.9\n",
"7 27.6 53.8 68.5\n",
"8 96.6 53.4 50.1\n",
"9 73.7 43.2 34.7\n"
]
}
],
"source": [
"subset_df = data_frame[['Score_1', 'Score_3', 'Score_5']]\n",
"\n",
"print(subset_df)"
]
},
{
"cell_type": "markdown",
Expand All @@ -140,10 +243,21 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"56.95000000000001\n"
]
}
],
"source": [
"avg_score_3 = data_frame['Score_3'].mean()\n",
"print (avg_score_3)"
]
},
{
"cell_type": "markdown",
Expand All @@ -154,10 +268,24 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"88.8"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max_score_4 = data_frame['Score_4'].max()\n",
"max_score_4"
]
},
{
"cell_type": "markdown",
Expand All @@ -168,10 +296,24 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"40.75"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"median_score_2 = data_frame['Score_2'].median()\n",
"median_score_2"
]
},
{
"cell_type": "markdown",
Expand All @@ -182,7 +324,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -203,10 +345,31 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Description Quantity UnitPrice Revenue\n",
"0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
"1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
"2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
"3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
"4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
"5 POPCORN HOLDER 7 0.85 5.95\n",
"6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
"7 PARTY BUNTING 4 4.95 19.80\n",
"8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
"9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00\n"
]
}
],
"source": [
"orders_data_frame = pd.DataFrame(orders)\n",
"print(orders_data_frame)"
]
},
{
"cell_type": "markdown",
Expand All @@ -217,10 +380,25 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Quantity Ordered: 2978\n",
"Total Revenue Generated: 637.0\n"
]
}
],
"source": [
"total_quantity_ordered = orders_data_frame['Quantity'].sum()\n",
"total_revenue_generated = orders_data_frame['Revenue'].sum()\n",
"\n",
"print(\"Total Quantity Ordered:\", total_quantity_ordered)\n",
"print(\"Total Revenue Generated:\", total_revenue_generated)"
]
},
{
"cell_type": "markdown",
Expand All @@ -231,10 +409,29 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Most expensive item price: 11.95\n",
"Least expensive item price: 0.18\n",
"Price difference: 11.77\n"
]
}
],
"source": [
"most_expensive = orders_data_frame['UnitPrice'].max()\n",
"least_expensive = orders_data_frame['UnitPrice'].min()\n",
"\n",
"price_difference = most_expensive - least_expensive\n",
"\n",
"print(\"Most expensive item price:\", most_expensive)\n",
"print(\"Least expensive item price:\", least_expensive)\n",
"print(\"Price difference:\", price_difference)"
]
}
],
"metadata": {
Expand All @@ -253,7 +450,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.11.2"
}
},
"nbformat": 4,
Expand Down