Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
261 changes: 261 additions & 0 deletions your-code/.ipynb_checkpoints/main-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction to Pandas Lab\n",
"\n",
"Complete the following set of exercises to solidify your knowledge of Pandas fundamentals."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Import Numpy and Pandas and alias them to `np` and `pd` respectively."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Create a Pandas Series containing the elements of the list below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lst = [5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Use indexing to return the third value in the Series above.\n",
"\n",
"*Hint: Remember that indexing begins at 0.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Create a Pandas DataFrame from the list of lists below. Each sublist should be represented as a row."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b = [[53.1, 95.0, 67.5, 35.0, 78.4],\n",
" [61.3, 40.8, 30.8, 37.8, 87.6],\n",
" [20.6, 73.2, 44.2, 14.6, 91.8],\n",
" [57.4, 0.1, 96.1, 4.2, 69.5],\n",
" [83.6, 20.5, 85.4, 22.8, 35.9],\n",
" [49.0, 69.0, 0.1, 31.8, 89.1],\n",
" [23.3, 40.7, 95.0, 83.8, 26.9],\n",
" [27.6, 26.4, 53.8, 88.8, 68.5],\n",
" [96.6, 96.4, 53.4, 72.4, 50.1],\n",
" [73.7, 39.0, 43.2, 81.6, 34.7]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. Rename the data frame columns based on the names in the list below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"colnames = ['Score_1', 'Score_2', 'Score_3', 'Score_4', 'Score_5']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. Create a subset of this data frame that contains only the Score 1, 3, and 5 columns."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7. From the original data frame, calculate the average Score_3 value."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8. From the original data frame, calculate the maximum Score_4 value."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 9. From the original data frame, calculate the median Score 2 value."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 10. Create a Pandas DataFrame from the dictionary of product orders below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"orders = {'Description': ['LUNCH BAG APPLE DESIGN',\n",
" 'SET OF 60 VINTAGE LEAF CAKE CASES ',\n",
" 'RIBBON REEL STRIPES DESIGN ',\n",
" 'WORLD WAR 2 GLIDERS ASSTD DESIGNS',\n",
" 'PLAYING CARDS JUBILEE UNION JACK',\n",
" 'POPCORN HOLDER',\n",
" 'BOX OF VINTAGE ALPHABET BLOCKS',\n",
" 'PARTY BUNTING',\n",
" 'JAZZ HEARTS ADDRESS BOOK',\n",
" 'SET OF 4 SANTA PLACE SETTINGS'],\n",
" 'Quantity': [1, 24, 1, 2880, 2, 7, 1, 4, 10, 48],\n",
" 'UnitPrice': [1.65, 0.55, 1.65, 0.18, 1.25, 0.85, 11.95, 4.95, 0.19, 1.25],\n",
" 'Revenue': [1.65, 13.2, 1.65, 518.4, 2.5, 5.95, 11.95, 19.8, 1.9, 60.0]}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 11. Calculate the total quantity ordered and revenue generated from these orders."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 12. Obtain the prices of the most expensive and least expensive items ordered and print the difference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading