-
Notifications
You must be signed in to change notification settings - Fork 45.4k
Closed
Labels
stat:awaiting responseWaiting on input from the contributorWaiting on input from the contributor
Description
Hi,
i have downloaded the NASNet-A_Large_331
checkpoint and have try to finetune this via train_image_classifier.py
.
I got the following error when restoring :
INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.NotFoundError'>,
Tensor name "cell_0/comb_iter_1/left/separable_5x5_1/depthwise_weights" not found in checkpoint files model.ckpt.index
[[Node: save/RestoreV2_37 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2_37/tensor_names, save/RestoreV2_37/shape_and_slices)]]
Infos provided in #2648 and #2656 did not resolve this issue.
System information
- What is the top-level directory of the model you are using:
/notebooks - Have I written custom code (as opposed to using a stock example script provided in TensorFlow):
no - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
Linux Ubuntu 16.04.3 LTS (Xenial Xerus) - TensorFlow installed from (source or binary):
tensorflow via docker 1.4.0-gpu-py3 - TensorFlow version (use command below):
v1.4.0-rc1-11-g130a514 1.4.0 - Bazel version (if compiling from source):
- CUDA/cuDNN version:
- cuda-8.0
- GPU model and memory:
Tesla V100-SXM2 16152MiB - Exact command to reproduce:
export CUDA_VISIBLE_DEVICES=""
force=0
DATASET='cifar10'
DATASET_DIR='cifar10'
TRAIN_DIR='train_dir'
PRETRAINED_MODEL="model.ckpt.index"
MODEL_NAME='nasnet_large'
[[ -d "issue-nasnet-tf-models" ]] || git clone https://github.com/tensorflow/models.git "issue-nasnet-tf-models"
cd "issue-nasnet-tf-models/research/slim/"
if [ ${force} -ne 0 ] || [ ! -f "$PRETRAINED_MODEL" ] ; then
wget https://storage.googleapis.com/download.tensorflow.org/models/nasnet-a_large_04_10_2017.tar.gz
tar -xf nasnet-a_large_04_10_2017.tar.gz
rm -f nasnet-a_large_04_10_2017.tar.gz
fi
[[ -d "${DATASET_DIR}" ]] || python3 download_and_convert_data.py --dataset_name=${DATASET} --dataset_dir=${DATASET_DIR}
# Fine-tune only the new layers for 1000 steps.
python3 train_image_classifier.py \
--train_dir=${TRAIN_DIR} \
--dataset_name=${DATASET} \
--dataset_split_name=train \
--dataset_dir=${DATASET_DIR} \
--model_name=${MODEL_NAME} \
--checkpoint_path=${PRETRAINED_MODEL} \
--checkpoint_exclude_scopes=aux_11/aux_logits,final_layer/FC \
--trainable_scopes=.*/aux_logits/FC,final_layer/FC \
--max_number_of_steps=1000 \
--learning_rate_decay_type=fixed \
--clone_on_cpu=True \
--moving_average_decay=0.99
Metadata
Metadata
Assignees
Labels
stat:awaiting responseWaiting on input from the contributorWaiting on input from the contributor