Skip to content

Tensorflow Object Detection API ptax Error with ptax #7113

@NiksanJP

Description

@NiksanJP

So I have this code

`import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import cv2
cap = cv2.VideoCapture(0)
sys.path.append("..")

from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

model = 'rfcn_resnet101_coco_2018_01_28'

MODEL_NAME = model
MODEL_FILE = 'D:/Python/' + model

PATH_TO_CKPT = 'D:/Python/' + model + '/frozen_inference_graph.pb'

PATH_TO_LABELS = 'D:/Python/mscoco_label_map.pbtxt'

NUM_CLASSES = 90

detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
`

I have entered all the folder locations and the name correctly. I
get CUDNN_STATUS_INTERNAL_ERROR OR
heaps of
2019-06-28 00:04:13.171528: W tensorflow/stream_executor/cuda/redzone_allocator.cc:294] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation 2019-06-28 00:04:13.198421: W tensorflow/stream_executor/cuda/redzone_allocator.cc:294] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation 2019-06-28 00:04:13.207294: W tensorflow/stream_executor/cuda/redzone_allocator.cc:294] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation

OS: Windows 10
Tensorflow: 2.0.0b and 1.14
CUDA: 10

Need help!

Metadata

Metadata

Assignees

No one assigned

    Labels

    models:researchmodels that come under research directorystat:awaiting responseWaiting on input from the contributor

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions