-
Notifications
You must be signed in to change notification settings - Fork 45.4k
Description
So I have this code
`import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import cv2
cap = cv2.VideoCapture(0)
sys.path.append("..")
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
model = 'rfcn_resnet101_coco_2018_01_28'
MODEL_NAME = model
MODEL_FILE = 'D:/Python/' + model
PATH_TO_CKPT = 'D:/Python/' + model + '/frozen_inference_graph.pb'
PATH_TO_LABELS = 'D:/Python/mscoco_label_map.pbtxt'
NUM_CLASSES = 90
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
`
I have entered all the folder locations and the name correctly. I
get CUDNN_STATUS_INTERNAL_ERROR OR
heaps of
2019-06-28 00:04:13.171528: W tensorflow/stream_executor/cuda/redzone_allocator.cc:294] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation 2019-06-28 00:04:13.198421: W tensorflow/stream_executor/cuda/redzone_allocator.cc:294] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation 2019-06-28 00:04:13.207294: W tensorflow/stream_executor/cuda/redzone_allocator.cc:294] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation
OS: Windows 10
Tensorflow: 2.0.0b and 1.14
CUDA: 10
Need help!