Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 17 additions & 3 deletions official/recommendation/ncf_input_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,8 @@
def create_dataset_from_tf_record_files(input_file_pattern,
pre_batch_size,
batch_size,
is_training=True):
is_training=True,
rebatch=False):
"""Creates dataset from (tf)records files for training/evaluation."""

files = tf.data.Dataset.list_files(input_file_pattern, shuffle=is_training)
Expand Down Expand Up @@ -62,6 +63,13 @@ def make_dataset(files_dataset, shard_index):
map_fn,
cycle_length=NUM_SHARDS,
num_parallel_calls=tf.data.experimental.AUTOTUNE)

if rebatch:
# A workaround for TPU Pod evaluation dataset.
# TODO (b/162341937) remove once it's fixed.
dataset = dataset.unbatch()
dataset = dataset.batch(pre_batch_size)

dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset

Expand Down Expand Up @@ -162,12 +170,18 @@ def create_ncf_input_data(params,
params["train_dataset_path"],
input_meta_data["train_prebatch_size"],
params["batch_size"],
is_training=True)
is_training=True,
rebatch=False)

# Re-batch evaluation dataset for TPU Pods.
# TODO (b/162341937) remove once it's fixed.
eval_rebatch = (params["use_tpu"] and strategy.num_replicas_in_sync > 8)
eval_dataset = create_dataset_from_tf_record_files(
params["eval_dataset_path"],
input_meta_data["eval_prebatch_size"],
params["eval_batch_size"],
is_training=False)
is_training=False,
rebatch=eval_rebatch)

num_train_steps = int(input_meta_data["num_train_steps"])
num_eval_steps = int(input_meta_data["num_eval_steps"])
Expand Down
4 changes: 3 additions & 1 deletion official/recommendation/ncf_keras_main.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,6 +235,7 @@ def run_ncf(_):

params = ncf_common.parse_flags(FLAGS)
params["distribute_strategy"] = strategy
params["use_tpu"] = (FLAGS.distribution_strategy == "tpu")

if params["use_tpu"] and not params["keras_use_ctl"]:
logging.error("Custom training loop must be used when using TPUStrategy.")
Expand Down Expand Up @@ -491,7 +492,8 @@ def step_fn(features):
logging.info("Done training epoch %s, epoch loss=%.3f", epoch + 1,
train_loss)

eval_input_iterator = iter(eval_input_dataset)
eval_input_iterator = iter(
strategy.experimental_distribute_dataset(eval_input_dataset))

hr_sum = 0.0
hr_count = 0.0
Expand Down