-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Closed
Labels
core:backendstat:awaiting tensorflowertheme:performancePerformance, scalability, large data sizes, slowness, etc.Performance, scalability, large data sizes, slowness, etc.
Description
To report a problem with TensorBoard itself, please fill out the
remainder of this template.
Environment information (required)
Please run diagnose_tensorboard.py (link below) in the same
environment from which you normally run TensorFlow/TensorBoard, and
paste the output here:
### Diagnostics
<details>
<summary>Diagnostics output</summary>
--- check: autoidentify
INFO: diagnose_tensorboard.py version 724b56cee52e7d8eb89bbeec1f0d5ce3e38c9682
--- check: general
INFO: sys.version_info: sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)
INFO: os.name: posix
INFO: os.uname(): posix.uname_result(sysname='Linux', nodename='web-tb-2-v1-5589568997-lmbdd', release='3.10.0-1062.1.2.el7.x86_64', version='#1 SMP Mon Sep 30 14:19:46 UTC 2019', machine='x86_64')
INFO: sys.getwindowsversion(): N/A
--- check: package_management
INFO: has conda-meta: False
INFO: $VIRTUAL_ENV: None
--- check: installed_packages
INFO: installed: tensorboard==2.1.1
INFO: installed: tensorflow==2.1.0
INFO: installed: tensorflow-estimator==2.1.0
--- check: tensorboard_python_version
INFO: tensorboard.version.VERSION: '2.1.1'
--- check: tensorflow_python_version
2020-06-19 03:56:52.987020: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libnvinfer.so.6: cannot open shared object file: No such file or directory
2020-06-19 03:56:52.987128: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libnvinfer_plugin.so.6: cannot open shared object file: No such file or directory
2020-06-19 03:56:52.987147: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
INFO: tensorflow.__version__: '2.1.0'
INFO: tensorflow.__git_version__: 'v2.1.0-rc2-17-ge5bf8de'
--- check: tensorboard_binary_path
INFO: which tensorboard: b'/usr/local/bin/tensorboard\n'
--- check: addrinfos
socket.has_ipv6 = True
socket.AF_UNSPEC = <AddressFamily.AF_UNSPEC: 0>
socket.SOCK_STREAM = <SocketKind.SOCK_STREAM: 1>
socket.AI_ADDRCONFIG = <AddressInfo.AI_ADDRCONFIG: 32>
socket.AI_PASSIVE = <AddressInfo.AI_PASSIVE: 1>
Loopback flags: <AddressInfo.AI_ADDRCONFIG: 32>
Loopback infos: [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('127.0.0.1', 0))]
Wildcard flags: <AddressInfo.AI_PASSIVE: 1>
Wildcard infos: [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('0.0.0.0', 0)), (<AddressFamily.AF_INET6: 10>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('::', 0, 0, 0))]
--- check: readable_fqdn
INFO: socket.getfqdn(): 'web-tb-2-v1-5589568997-lmbdd'
--- check: stat_tensorboardinfo
INFO: directory: /tmp/.tensorboard-info
INFO: os.stat(...): os.stat_result(st_mode=16895, st_ino=4879944232, st_dev=3145810, st_nlink=1, st_uid=0, st_gid=0, st_size=25, st_atime=1592535469, st_mtime=1592535447, st_ctime=1592535447)
INFO: mode: 0o40777
--- check: source_trees_without_genfiles
INFO: tensorboard_roots (1): ['/usr/local/lib/python3.6/dist-packages']; bad_roots (0): []For browser-related issues, please additionally specify:
- Browser type and version (e.g., Chrome 64.0.3282.140):
- Screenshot, if it’s a visual issue:
Issue description
Please describe the bug as clearly as possible. How can we reproduce the
problem without additional resources (including external data files and
proprietary Python modules)?
My tensorboard runs as docker container. Then it is weird that the memory usage keep increasing until oom. It is the command tensorboard --logdir /tmp/data/ --bind_all.
There are lots of jpg in my tfevent file. Does it matter?
NavinF, nuttincka and fzyzcjy
Metadata
Metadata
Assignees
Labels
core:backendstat:awaiting tensorflowertheme:performancePerformance, scalability, large data sizes, slowness, etc.Performance, scalability, large data sizes, slowness, etc.

