Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions R/boost_tree.R
Original file line number Diff line number Diff line change
Expand Up @@ -472,6 +472,17 @@ as_xgb_data <- function(x, y, validation = 0, event_level = "first", ...) {

list(data = dat, watchlist = wlist)
}

get_event_level <- function(model_spec){
if ("event_level" %in% names(model_spec$eng_args)) {
event_level <- get_expr(model_spec$eng_args$event_level)
} else {
# "first" is the default for as_xgb_data() and xgb_train()
event_level <- "first"
}
event_level
}

#' @importFrom purrr map_df
#' @export
#' @rdname multi_predict
Expand Down
14 changes: 12 additions & 2 deletions R/boost_tree_data.R
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,12 @@ set_pred(
pre = NULL,
post = function(x, object) {
if (is.vector(x)) {
x <- ifelse(x >= 0.5, object$lvl[2], object$lvl[1])
event_level <- get_event_level(object$spec)
if (event_level == "first") {
x <- ifelse(x >= 0.5, object$lvl[1], object$lvl[2])
} else {
x <- ifelse(x >= 0.5, object$lvl[2], object$lvl[1])
}
} else {
x <- object$lvl[apply(x, 1, which.max)]
}
Expand All @@ -178,7 +183,12 @@ set_pred(
pre = NULL,
post = function(x, object) {
if (is.vector(x)) {
x <- tibble(v1 = 1 - x, v2 = x)
event_level <- get_event_level(object$spec)
if (event_level == "first") {
x <- tibble(v1 = x, v2 = 1 - x)
} else {
x <- tibble(v1 = 1 - x, v2 = x)
}
} else {
x <- as_tibble(x, .name_repair = "minimal")
}
Expand Down
15 changes: 9 additions & 6 deletions man/boost_tree.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

72 changes: 46 additions & 26 deletions tests/testthat/test_boost_tree_xgboost.R
Original file line number Diff line number Diff line change
Expand Up @@ -210,15 +210,14 @@ test_that('submodel prediction', {

mp_res <- multi_predict(class_fit, new_data = wa_churn[1:4, vars], trees = 5, type = "prob")
mp_res <- do.call("rbind", mp_res$.pred)
expect_equal(mp_res[[".pred_No"]], pred_class)
expect_equal(mp_res[[".pred_Yes"]], pred_class)

expect_error(
multi_predict(class_fit, newdata = wa_churn[1:4, vars], trees = 5, type = "prob"),
"Did you mean"
)
})


test_that('default engine', {
skip_if_not_installed("xgboost")
expect_warning(
Expand Down Expand Up @@ -422,43 +421,64 @@ test_that('argument checks for data dimensions', {

})

test_that("set `event_level` as engine-specific argument", {
test_that("fit and prediction with `event_level`", {

skip_if_not_installed("xgboost")

data(penguins, package = "modeldata")
penguins <- na.omit(penguins[, -c(1:2)])

spec <-
boost_tree(trees = 10, tree_depth = 3) %>%
set_engine(
"xgboost",
eval_metric = "aucpr",
event_level = "second",
verbose = 1
) %>%
set_mode("classification")
train_x <- as.matrix(penguins[-(1:4), -5])
train_y_1 <- -as.numeric(penguins$sex[-(1:4)]) + 2
train_y_2 <- as.numeric(penguins$sex[-(1:4)]) - 1

x_pred <- xgboost::xgb.DMatrix(as.matrix(penguins[1:4, -5]))

# event_level = "first"
set.seed(24)
fit_p <- spec %>% fit(sex ~ ., data = penguins)
fit_p_1 <- boost_tree(trees = 10) %>%
set_engine("xgboost", eval_metric = "auc"
# event_level = "first" is the default
) %>%
set_mode("classification") %>%
fit(sex ~ ., data = penguins[-(1:4), ])

penguins_x <- as.matrix(penguins[, -5])
penguins_y <- as.numeric(penguins$sex) - 1
xgbmat <- xgb.DMatrix(data = penguins_x, label = penguins_y)
xgbmat_train_1 <- xgb.DMatrix(data = train_x, label = train_y_1)

set.seed(24)
fit_xgb <- xgboost::xgb.train(data = xgbmat,
params = list(eta = 0.3, max_depth = 3,
gamma = 0, colsample_bytree = 1,
min_child_weight = 1,
subsample = 1),
fit_xgb_1 <- xgboost::xgb.train(data = xgbmat_train_1,
nrounds = 10,
watchlist = list("training" = xgbmat),
watchlist = list("training" = xgbmat_train_1),
objective = "binary:logistic",
verbose = 1,
eval_metric = "aucpr",
nthread = 1)
eval_metric = "auc")

expect_equal(fit_p_1$fit$evaluation_log, fit_xgb_1$evaluation_log)

pred_xgb_1 <- predict(fit_xgb_1, x_pred)
pred_p_1 <- predict(fit_p_1, new_data = penguins[1:4, ], type = "prob")
expect_equal(pred_p_1[[".pred_female"]], pred_xgb_1)

# event_level = "second"
set.seed(24)
fit_p_2 <- boost_tree(trees = 10) %>%
set_engine("xgboost", eval_metric = "auc",
event_level = "second") %>%
set_mode("classification") %>%
fit(sex ~ ., data = penguins[-(1:4), ])

xgbmat_train_2 <- xgb.DMatrix(data = train_x, label = train_y_2)

set.seed(24)
fit_xgb_2 <- xgboost::xgb.train(data = xgbmat_train_2,
nrounds = 10,
watchlist = list("training" = xgbmat_train_2),
objective = "binary:logistic",
eval_metric = "auc")

expect_equal(fit_p_2$fit$evaluation_log, fit_xgb_2$evaluation_log)

expect_equal(fit_p$fit$evaluation_log, fit_xgb$evaluation_log)
pred_xgb_2 <- predict(fit_xgb_2, x_pred)
pred_p_2 <- predict(fit_p_2, new_data = penguins[1:4, ], type = "prob")
expect_equal(pred_p_2[[".pred_male"]], pred_xgb_2)

})