- Core Principles of the tidyverse
-
- Tidy Data
- Definition of tidy data
- Importance of tidy data in data analysis
-
- The Grammar of Data Manipulation
- Introduction to the concept
- Overview of the pipe operator %>%
- Key Packages in the tidyverse
-
- ggplot2: Data Visualization
- Introduction to ggplot2
- Basic syntax and structure
- Examples of creating different types of plots
- Customization options
-
- dplyr: Data Manipulation
- Introduction to dplyr
- Key functions: filter(), select(), mutate(), arrange(), summarize()
- Grouped operations with group_by()
-
- tidyr: Data Tidying
- Introduction to tidyr
- Key functions: gather(), spread(), separate(), unite()
- Working with missing values
- Working with variables (local, global)
-
- readr: Data Import
- Introduction to readr
- Reading different types of data files (csv, tsv, etc.)
- Handling issues like missing values, column types
-
- purrr: Functional Programming
- Introduction to purrr
- Key functions: map(), reduce(), walk()
- Benefits of functional programming in data science
-
- tibble: Modern Data Frames
- Introduction to tibble
- Differences from base R data frames
- Tibble vs. data.frame vs. data.table
- Key features and functions