Skip to content

tomaztk/R_Data_manipulation

Repository files navigation

Data Manipulation with Tidyverse

  1. Core Principles of the tidyverse
    1. Tidy Data
    • Definition of tidy data
    • Importance of tidy data in data analysis
    1. The Grammar of Data Manipulation
    • Introduction to the concept
    • Overview of the pipe operator %>%
  1. Key Packages in the tidyverse
    1. ggplot2: Data Visualization
    • Introduction to ggplot2
    • Basic syntax and structure
    • Examples of creating different types of plots
    • Customization options
    1. dplyr: Data Manipulation
    • Introduction to dplyr
    • Key functions: filter(), select(), mutate(), arrange(), summarize()
    • Grouped operations with group_by()
    1. tidyr: Data Tidying
    • Introduction to tidyr
    • Key functions: gather(), spread(), separate(), unite()
    • Working with missing values
    • Working with variables (local, global)
    1. readr: Data Import
    • Introduction to readr
    • Reading different types of data files (csv, tsv, etc.)
    • Handling issues like missing values, column types
    1. purrr: Functional Programming
    • Introduction to purrr
    • Key functions: map(), reduce(), walk()
    • Benefits of functional programming in data science
    1. tibble: Modern Data Frames
    • Introduction to tibble
    • Differences from base R data frames
    • Tibble vs. data.frame vs. data.table
    • Key features and functions

About

R Data manipulation with Tidyverse

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published