Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
-
Updated
Oct 18, 2024 - Python
Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/
🛠 A lite C++ toolkit of awesome AI models, support ONNXRuntime, MNN, TNN, NCNN and TensorRT.
C++ library based on tensorrt integration
OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.
🔥🔥🔥🔥 (Earlier YOLOv7 not official one) YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥
🔥🔥🔥 专注于YOLOv5,YOLOv7、YOLOv8、YOLOv9改进模型,Support to improve backbone, neck, head, loss, IoU, NMS and other modules🚀
BoT-SORT: Robust Associations Multi-Pedestrian Tracking
NVIDIA DeepStream SDK 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 implementation for YOLO models
🔥🔥🔥TensorRT for YOLOv8、YOLOv8-Pose、YOLOv8-Seg、YOLOv8-Cls、YOLOv7、YOLOv6、YOLOv5、YOLONAS......🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎
🚀🚀🚀 YOLO series of PaddlePaddle implementation, PP-YOLOE+, RT-DETR, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10, YOLOX, YOLOv5u, YOLOv7u, YOLOv6Lite, RTMDet and so on. 🚀🚀🚀
🔥🔥🔥🔥🔥🔥Docker NVIDIA Docker2 YOLOV5 YOLOX YOLO Deepsort TensorRT ROS Deepstream Jetson Nano TX2 NX for High-performance deployment(高性能部署)
Easy & Modular Computer Vision Detectors, Trackers & SAM - Run YOLOv9,v8,v7,v6,v5,R,X in under 10 lines of code.
🔄 A tool for object detection and image segmentation dataset format conversion.
YOLOX + ROS2 object detection package (C++ only support)
CF 火线娱乐辅助
使用OpenCV部署YOLOX,支持YOLOX-S、YOLOX-M、YOLOX-L、YOLOX-X、YOLOX-Darknet53五种结构,包含C++和Python两种版本的程序
small c++ library to quickly deploy models using onnxruntime
Add a description, image, and links to the yolox topic page so that developers can more easily learn about it.
To associate your repository with the yolox topic, visit your repo's landing page and select "manage topics."