Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

setup(
name="turingquant",
version="0.1.2",
version="0.1.3",
packages=find_packages(),
install_requires=["pandas", "pandas_datareader", "numpy", "matplotlib", "alpha_vantage", "bs4", "plotly"],

Expand Down
64 changes: 51 additions & 13 deletions turingquant/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,19 +63,11 @@ def rolling_beta(returns, benchmark, window, plot=True):
A série não possui os `window` primeiros dias.

"""
returns = pd.DataFrame(returns)
benchmark = pd.DataFrame(benchmark)
merged = returns.merge(benchmark, left_index=True, right_index=True)
# one-liner meio ilegível mas: pega um array de NaN de numpy e junta com uma lista
# que itera entre (window, len) e calcula o beta pros últimos `window` dias
merged['rolling_beta'] = np.append(np.full(window, np.nan),
[beta(merged.iloc[i - window:i, 0], merged.iloc[i - window:i, 1])
for i in range(window, len(merged))]
)
merged = merged[window:]
rolling_beta = pd.Series([beta(returns[i-window:i], benchmark[i-window:i])
for i in range(window, len(returns))], index=returns[window:].index)
Comment on lines +66 to +67
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Bem legal essa solução com list comprehension

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sim, tava meio zoado ficar convertendo pra dataframe

if plot:
fig = px.line(merged['rolling_beta'], title="Beta móvel")
overall_beta = beta(merged.iloc[:, 0], merged.iloc[:, 1])
fig = px.line(rolling_beta, title="Beta móvel")
overall_beta = beta(returns, benchmark)
fig.update_layout(shapes=[
dict(
type='line',
Expand All @@ -99,7 +91,53 @@ def rolling_beta(returns, benchmark, window, plot=True):
fig.update_xaxes(title_text='Tempo')
fig.update_yaxes(title_text='Beta móvel: ' + str(window) + ' períodos')
fig.show()
return merged['rolling_beta']
return rolling_beta


def rolling_sharpe(returns, window, risk_free=0, plot=True):
"""
Plota o beta móvel para um ativo e um benchmark de referência, na forma de séries de retornos.

Parâmetros:
returns (array): série de retornos para o qual o Sharpe Ratio será calculado.
window (int): janela móvel para calcular o Sharpe ao longo do tempo.
risk_free (float): valor da taxa livre de risco para cálculo do Sharpe.
plot (bool): se `True`, plota um gráfico de linha com o Sharpe ao longo do tempo.

Retorna:
rolling_beta (pd.Series): uma série com os valores do Beta para os últimos `window` dias.
A série não possui os `window` primeiros dias.

"""
rolling_sharpe = pd.Series([sharpe_ratio(returns[i - window:i], risk_free)
for i in range(window, len(returns))], returns[window:].index)
if plot:
fig = px.line(rolling_sharpe, title="Sharpe móvel")
overall_sharpe = sharpe_ratio(returns, risk_free)
fig.update_layout(shapes=[
dict(
type='line',
xref='paper', x0=0, x1=1,
yref='y', y0=overall_sharpe, y1=overall_sharpe,
line=dict(
color='grey',
width=2,
dash='dash'
)
)
], annotations=[
dict(
text='sharpe total: %.3f' % overall_sharpe,
xref='paper', x=0.05,
yref='y', y=overall_sharpe,
xanchor='left'
)
])
fig.update_layout(showlegend=False)
fig.update_xaxes(title_text='Tempo')
fig.update_yaxes(title_text='Sharpe móvel: ' + str(window) + ' períodos')
fig.show()
return rolling_sharpe


def rolling_sharpe(returns, window, risk_free=0, plot=True):
Expand Down