https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
-Various data scaling methods and encoding methods
-Various values of the model parameters for each model
-Various values for the hyperparameters
-Various numbers 𝑘for 𝑘 fold cross validation
You can use AutoML function to automatically run different combinations of the above within a
“single major function”.
if not isinstance(train, pd.DataFrame):
raise TypeError
# if not isinstance(scaler, dict):
# raise TypeError
predicted = {}
print("Encoder Type : ",encoder)
print("Scaler Type : ",scaler)
print("Model Type : ",model)
hyper_param = {
"k-means": [5],
"em": [5],
"clarans": {"numCluster":[4], "numLocal":[5], "maxNeighbor":[5]},
"dbscan": {"eps":[0.1], "minSample":[4]}
for e in encoder:
e_train = Encoding(train, e)
print("------------------------------------")
print("Encoder Type: ",e)
for s in scaler:
print("------------------------------------")
print("Scaler Type : " , s)
s_train = Scaling(e_train,s)
for m in model:
print("------------------------------------")
print("Model Type : ",m)
predicted = predict(m, label, target)
AutoML(scaler, encoder, model, df_label, df_target)

