Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

spFSR

This repository is a collection of methods using Simultaneous Perturbation Stochastic Approximation (SPSA) for feature selection and ranking in Python. It currently contains the following:

(1) An implementation of feature selection and ranking via SPSA based on V. Aksakalli and M. Malekipirbazari (Pattern Recognition Letters, 2016) and Zeren D. Yenice et al. (https://arxiv.org/abs/1804.05589, 2018). This algorithm searches for a locally optimal set of features that yield the best predictive performance using a specified error measure such as mean squared error (for regression problems) and accuracy rate (for classification problems). This particular implementation makes use of Barzilai and Borwein non-monotone gains for much faster convergence. The related files are spFSR.py and spFSR_example_github.py.

(2) An implementation of feature selection and weighting via SPSA. The related files are SpFtWgt.py and spFtWgt_example_github.py.

About

Simultaneous Perturbation Stochastic Approximation for Feature Selection and Ranking

Resources

License

Releases

No releases published

Packages

No packages published

Languages