Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/python_test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ jobs:
env:
VECTORIZE_TOKEN: ${{ secrets.VECTORIZE_TOKEN }}
VECTORIZE_ORG: ${{ secrets.VECTORIZE_ORG }}
VECTORIZE_ENV: dev
VECTORIZE_ENV: ${{ secrets.VECTORIZE_ENV }}
run: uv run pytest tests -vv
- name: Minimize uv cache
run: uv cache prune --ci
2 changes: 1 addition & 1 deletion langchain/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ authors = [
requires-python = ">=3.9"
dependencies = [
"langchain-core>=0.3.45",
"vectorize-client>=0.1.3",
"vectorize-client>=0.4.0",
]
classifiers = [
"Development Status :: 3 - Alpha",
Expand Down
69 changes: 42 additions & 27 deletions langchain/tests/test_retrievers.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,16 +68,14 @@ def api_client(api_token: str, environment: str) -> Iterator[ApiClient]:
def pipeline_id(api_client: v.ApiClient, org_id: str) -> Iterator[str]:
pipelines = v.PipelinesApi(api_client)

connectors_api = v.ConnectorsApi(api_client)
connectors_api = v.SourceConnectorsApi(api_client)
response = connectors_api.create_source_connector(
org_id,
[
v.CreateSourceConnector(
name="from api", type=v.SourceConnectorType.FILE_UPLOAD
)
],
v.CreateSourceConnectorRequest(
v.FileUpload(name="from api", type="FILE_UPLOAD")
),
)
source_connector_id = response.connectors[0].id
source_connector_id = response.connector.id
logging.info("Created source connector %s", source_connector_id)

uploads_api = v.UploadsApi(api_client)
Expand Down Expand Up @@ -111,13 +109,17 @@ def pipeline_id(api_client: v.ApiClient, org_id: str) -> Iterator[str]:
else:
logging.info("Upload successful")

ai_platforms = connectors_api.get_ai_platform_connectors(org_id)
ai_platforms = v.AIPlatformConnectorsApi(api_client).get_ai_platform_connectors(
org_id
)
builtin_ai_platform = next(
c.id for c in ai_platforms.ai_platform_connectors if c.type == "VECTORIZE"
)
logging.info("Using AI platform %s", builtin_ai_platform)

vector_databases = connectors_api.get_destination_connectors(org_id)
vector_databases = v.DestinationConnectorsApi(
api_client
).get_destination_connectors(org_id)
builtin_vector_db = next(
c.id for c in vector_databases.destination_connectors if c.type == "VECTORIZE"
)
Expand All @@ -127,24 +129,24 @@ def pipeline_id(api_client: v.ApiClient, org_id: str) -> Iterator[str]:
org_id,
v.PipelineConfigurationSchema(
source_connectors=[
v.SourceConnectorSchema(
v.PipelineSourceConnectorSchema(
id=source_connector_id,
type=v.SourceConnectorType.FILE_UPLOAD,
config={},
)
],
destination_connector=v.DestinationConnectorSchema(
destination_connector=v.PipelineDestinationConnectorSchema(
id=builtin_vector_db,
type=v.DestinationConnectorType.VECTORIZE,
type="VECTORIZE",
config={},
),
ai_platform=v.AIPlatformSchema(
ai_platform_connector=v.PipelineAIPlatformConnectorSchema(
id=builtin_ai_platform,
type=v.AIPlatformType.VECTORIZE,
config=v.AIPlatformConfigSchema(),
type="VECTORIZE",
config={},
),
pipeline_name="Test pipeline",
schedule=v.ScheduleSchema(type=v.ScheduleSchemaType.MANUAL),
schedule=v.ScheduleSchema(type="manual"),
),
)
pipeline_id = pipeline_response.data.id
Expand Down Expand Up @@ -173,9 +175,15 @@ def test_retrieve_init_args(
)
start = time.time()
while True:
docs = retriever.invoke(input="What are you?")
if len(docs) == 2:
break
try:
docs = retriever.invoke(input="What are you?")
if len(docs) == 2:
break
except Exception as e:
if "503" in str(e):
continue
raise RuntimeError(e) from e

if time.time() - start > 180:
msg = "Docs not retrieved in time"
raise RuntimeError(msg)
Expand All @@ -191,15 +199,22 @@ def test_retrieve_invoke_args(
retriever = VectorizeRetriever(environment=environment, api_token=api_token)
start = time.time()
while True:
docs = retriever.invoke(
input="What are you?",
organization=org_id,
pipeline_id=pipeline_id,
num_results=2,
)
if len(docs) == 2:
break
try:
docs = retriever.invoke(
input="What are you?",
organization=org_id,
pipeline_id=pipeline_id,
num_results=2,
)
if len(docs) == 2:
break

except Exception as e:
if "503" in str(e):
continue
raise RuntimeError(e) from e
if time.time() - start > 180:
msg = "Docs not retrieved in time"
raise RuntimeError(msg)

time.sleep(1)
10 changes: 5 additions & 5 deletions langchain/uv.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading