Skip to content

[Bug]: ValueError: Current node has no GPU available #17980

@GGKOP

Description

@GGKOP

Your current environment

The output of python collect_env.py
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.35

Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA L40S
GPU 1: NVIDIA L40S
GPU 2: NVIDIA L40S
GPU 3: NVIDIA L40S
GPU 4: NVIDIA L40S
GPU 5: NVIDIA L40S
GPU 6: NVIDIA L40S
GPU 7: NVIDIA L40S

Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               64
On-line CPU(s) list:                  0-63
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Gold 6430
CPU family:                           6
Model:                                143
Thread(s) per core:                   1
Core(s) per socket:                   32
Socket(s):                            2
Stepping:                             8
CPU max MHz:                          3400.0000
CPU min MHz:                          800.0000
BogoMIPS:                             4200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                       VT-x
L1d cache:                            3 MiB (64 instances)
L1i cache:                            2 MiB (64 instances)
L2 cache:                             128 MiB (64 instances)
L3 cache:                             120 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-31
NUMA node1 CPU(s):                    32-63
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torch-tb-profiler==0.4.3
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] numpy                     2.2.5                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.4.0                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torch-tb-profiler         0.4.3                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.51.3                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.3rc2.dev179+gdc1b4a6f1.d20250423
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PIX     PIX     PIX     SYS     SYS     SYS     SYS     PIX     SYS     SYS     0-31    0               N/A
GPU1    PIX      X      PIX     PIX     SYS     SYS     SYS     SYS     PIX     SYS     SYS     0-31    0               N/A
GPU2    PIX     PIX      X      PIX     SYS     SYS     SYS     SYS     PIX     SYS     SYS     0-31    0               N/A
GPU3    PIX     PIX     PIX      X      SYS     SYS     SYS     SYS     PIX     SYS     SYS     0-31    0               N/A
GPU4    SYS     SYS     SYS     SYS      X      PIX     PIX     PIX     SYS     PIX     SYS     32-63   1               N/A
GPU5    SYS     SYS     SYS     SYS     PIX      X      PIX     PIX     SYS     PIX     SYS     32-63   1               N/A
GPU6    SYS     SYS     SYS     SYS     PIX     PIX      X      PIX     SYS     PIX     SYS     32-63   1               N/A
GPU7    SYS     SYS     SYS     SYS     PIX     PIX     PIX      X      SYS     PIX     SYS     32-63   1               N/A
NIC0    PIX     PIX     PIX     PIX     SYS     SYS     SYS     SYS      X      SYS     SYS
NIC1    SYS     SYS     SYS     SYS     PIX     PIX     PIX     PIX     SYS      X      SYS
NIC2    SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2

LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/mpi/gcc/openmpi-4.1.7a1/lib:/usr/local/cuda/lib64:/usr/mpi/gcc/openmpi-4.1.7a1/lib:
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
the command line of ray GLOO_SOCKET_IFNAME=bond0 NCCL_SOCKET_IFNAME=bond0 ray start --head --port=6379 the output of ray status
======== Autoscaler status: 2025-05-12 13:56:11.534834 ========
Node status
---------------------------------------------------------------
Active:
 1 node_62fbf2e9fa2b727c9da8c4c875d8a158197b1400d4845364594071c4
 1 node_841b8f4a6a5122881cce5f9cbe246bad6af8c4675e4368e8195faa31
Pending:
 (no pending nodes)
Recent failures:
 (no failures)

Resources
---------------------------------------------------------------
Usage:
 0.0/128.0 CPU
 0.0/16.0 GPU
 0B/3.56TiB memory
 0B/372.53GiB object_store_memory

Constraints:
 (no request_resources() constraints)
Demands:
 (no resource demands)

🐛 Describe the bug

The output of vllm serve models/DeepSeek-V2-Lite --tensor-parallel-size 8 --data-parallel-size 2 --enable-expert-parallel --trust-remote-code --gpu-memory-utilization 0.97 --max-model-len 512 --max-num-seqs 1 --max-num-batched-tokens 512 --enforce-eager --distributed-executor-backend ray
INFO 05-12 13:45:42 [__init__.py:239] Automatically detected platform cuda.
INFO 05-12 13:45:43 [api_server.py:1034] vLLM API server version 0.8.3rc2.dev179+gdc1b4a6f1.d20250423
INFO 05-12 13:45:43 [api_server.py:1035] args: Namespace(subparser='serve', model_tag='/home/models/DeepSeek-V2-Lite', config='', host=None, port=8000, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/home/models/DeepSeek-V2-Lite', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, allowed_local_media_path=None, load_format='auto', download_dir=None, model_loader_extra_config=None, use_tqdm_on_load=True, config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=512, guided_decoding_backend='auto', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend='ray', pipeline_parallel_size=1, tensor_parallel_size=8, data_parallel_size=2, enable_expert_parallel=True, max_parallel_loading_workers=None, ray_workers_use_nsight=False, disable_custom_all_reduce=False, block_size=None, enable_prefix_caching=None, prefix_caching_hash_algo='builtin', disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.97, num_gpu_blocks_override=None, max_num_batched_tokens=512, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=1, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_token=None, hf_overrides=None, enforce_eager=True, max_seq_len_to_capture=8192, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_chunked_mm_input=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7fedf08062a0>)
INFO 05-12 13:45:43 [config.py:209] Replacing legacy 'type' key with 'rope_type'
INFO 05-12 13:45:51 [config.py:689] This model supports multiple tasks: {'classify', 'score', 'generate', 'reward', 'embed'}. Defaulting to 'generate'.
INFO 05-12 13:45:51 [config.py:1901] Chunked prefill is enabled with max_num_batched_tokens=512.
WARNING 05-12 13:45:51 [cuda.py:97] To see benefits of async output processing, enable CUDA graph. Since, enforce-eager is enabled, async output processor cannot be used
INFO 05-12 13:45:56 [__init__.py:239] Automatically detected platform cuda.
INFO 05-12 13:45:56 [__init__.py:239] Automatically detected platform cuda.
(EngineCore_0 pid=2325124) INFO 05-12 13:45:58 [core.py:61] Initializing a V1 LLM engine (v0.8.3rc2.dev179+gdc1b4a6f1.d20250423) with config: model='/home/models/DeepSeek-V2-Lite', speculative_config=None, tokenizer='/home/models/DeepSeek-V2-Lite', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=512, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=8, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=True, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/home/models/DeepSeek-V2-Lite, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[],"max_capture_size":0}
(EngineCore_1 pid=2325125) INFO 05-12 13:45:58 [core.py:61] Initializing a V1 LLM engine (v0.8.3rc2.dev179+gdc1b4a6f1.d20250423) with config: model='/home/models/DeepSeek-V2-Lite', speculative_config=None, tokenizer='/home/models/DeepSeek-V2-Lite', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=512, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=8, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=True, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/home/models/DeepSeek-V2-Lite, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[],"max_capture_size":0}
(EngineCore_1 pid=2325125) 2025-05-12 13:45:59,016      INFO worker.py:1694 -- Connecting to existing Ray cluster at address: 10.30.1.16:6379...
(EngineCore_0 pid=2325124) 2025-05-12 13:45:59,016      INFO worker.py:1694 -- Connecting to existing Ray cluster at address: 10.30.1.16:6379...
(EngineCore_1 pid=2325125) 2025-05-12 13:45:59,028      INFO worker.py:1888 -- Connected to Ray cluster.
(EngineCore_0 pid=2325124) 2025-05-12 13:45:59,029      INFO worker.py:1888 -- Connected to Ray cluster.
(EngineCore_0 pid=2325124) INFO 05-12 13:45:59 [ray_utils.py:335] No current placement group found. Creating a new placement group.
(EngineCore_0 pid=2325124) INFO 05-12 13:45:59 [ray_distributed_executor.py:176] use_ray_spmd_worker: True
(EngineCore_1 pid=2325125) INFO 05-12 13:46:00 [ray_utils.py:335] No current placement group found. Creating a new placement group.
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387] EngineCore hit an exception: Traceback (most recent call last):
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/v1/engine/core.py", line 376, in run_engine_core
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     engine_core = DPEngineCoreProc(*args, **kwargs)
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/v1/engine/core.py", line 564, in __init__
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     super().__init__(input_path, output_path, vllm_config, executor_class,
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/v1/engine/core.py", line 320, in __init__
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     super().__init__(vllm_config, executor_class, log_stats)
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/v1/engine/core.py", line 67, in __init__
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     self.model_executor = executor_class(vllm_config)
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/executor/executor_base.py", line 286, in __init__
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     super().__init__(*args, **kwargs)
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/executor/executor_base.py", line 52, in __init__
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     self._init_executor()
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/executor/ray_distributed_executor.py", line 105, in _init_executor
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     initialize_ray_cluster(self.parallel_config)
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]   File "/home/wangyxbh/vllm/vllm/executor/ray_utils.py", line 358, in initialize_ray_cluster
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387]     raise ValueError(
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387] ValueError: Current node has no GPU available. current_node_resource={'bundle_group_2_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'bundle_group_0_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'node:10.30.1.16': 0.999, 'accelerator_type:L40S': 1.0, 'bundle_group_6_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'bundle_group_dde7c82b3e1573af25e1cb38b27c02000000': 7999.992, 'node:10.30.1.16_group_dde7c82b3e1573af25e1cb38b27c02000000': 0.001, 'node:10.30.1.16_group_0_dde7c82b3e1573af25e1cb38b27c02000000': 0.001, 'bundle_group_5_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'bundle_group_4_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'node:__internal_head__': 1.0, 'CPU': 64.0, 'object_store_memory': 200000000000.0, 'bundle_group_1_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'bundle_group_7_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'bundle_group_3_dde7c82b3e1573af25e1cb38b27c02000000': 999.999, 'memory': 1952192348160.0}. vLLM engine cannot start without GPU. Make sure you have at least 1 GPU available in a node current_node_id='841b8f4a6a5122881cce5f9cbe246bad6af8c4675e4368e8195faa31' current_ip='10.30.1.16'.
(EngineCore_1 pid=2325125) ERROR 05-12 13:46:00 [core.py:387] 
(EngineCore_1 pid=2325125) INFO 05-12 13:46:00 [ray_distributed_executor.py:127] Shutting down Ray distributed executor. If you see error log from logging.cc regarding SIGTERM received, please ignore because this is the expected termination process in Ray.
CRITICAL 05-12 13:46:00 [core_client.py:359] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
Killed

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingstaleOver 90 days of inactivity

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions