Skip to content

[Bug]: Undefined symbol cutlass_moe_mm_sm100 on SM120 CUDA builds (macro enabled, grouped_mm_c3x_sm100.cu not compiled) #26843

@Jonahcb

Description

@Jonahcb

Your current environment

Collecting environment information... ============================== System Info ============================== OS : Ubuntu 24.04.3 LTS (x86_64) GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version : Could not collect CMake version : version 4.1.0 Libc version : glibc-2.39

==============================
PyTorch Info

PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A

==============================
Python Environment

Python version : 3.12.11 | packaged by conda-forge | (main, Jun 4 2025, 14:45:31) [GCC 13.3.0] (64-bit runtime)
Python platform : Linux-6.8.0-59-generic-x86_64-with-glibc2.39

==============================
CUDA / GPU Info

Is CUDA available : True
CUDA runtime version : 12.9.86
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA GeForce RTX 5060 Ti
GPU 1: NVIDIA GeForce RTX 5060 Ti

Nvidia driver version : 575.51.02
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.2
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True

==============================
CPU Info

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7532 32-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
Stepping: 0
Frequency boost: enabled
CPU(s) scaling MHz: 70%
CPU max MHz: 2400.0000
CPU min MHz: 1500.0000
BogoMIPS: 4800.23
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es
Virtualization: AMD-V
L1d cache: 1 MiB (32 instances)
L1i cache: 1 MiB (32 instances)
L2 cache: 16 MiB (32 instances)
L3 cache: 256 MiB (16 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-63
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

==============================
Versions of relevant libraries

[pip3] flashinfer-python==0.4.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.15.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.2.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.57.0
[pip3] triton==3.4.0
[conda] No relevant packages

==============================
vLLM Info

ROCM Version : Could not collect
vLLM Version : 0.11.0rc2.dev538+gd0ab198c4.d20251013 (git sha: d0ab198, date: 20251013)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
�[4mGPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X PHB 0-63 0 N/A
GPU1 PHB X 0-63 0 N/A

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

==============================
Environment Variables

NVIDIA_VISIBLE_DEVICES=D.0ff75145ca3e98fd88a6db159fd99e86a377369b1e02703117d6f81cd996de66/gpu=2,D.0ff75145ca3e98fd88a6db159fd99e86a377369b1e02703117d6f81cd996de66/gpu=3
NVIDIA_REQUIRE_CUDA=cuda>=12.9 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566 brand=unknown,driver>=570,driver<571 brand=grid,driver>=570,driver<571 brand=tesla,driver>=570,driver<571 brand=nvidia,driver>=570,driver<571 brand=quadro,driver>=570,driver<571 brand=quadrortx,driver>=570,driver<571 brand=nvidiartx,driver>=570,driver<571 brand=vapps,driver>=570,driver<571 brand=vpc,driver>=570,driver<571 brand=vcs,driver>=570,driver<571 brand=vws,driver>=570,driver<571 brand=cloudgaming,driver>=570,driver<571
NCCL_VERSION=2.27.3-1
NVIDIA_DRIVER_CAPABILITIES=all
NVCC_THREADS=1
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.9.1
PYTORCH_VERSION=2.8.0
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
MAX_JOBS=4
LD_LIBRARY_PATH=
PYTORCH_INDEX_URL=https://download.pytorch.org/whl/cu129
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Your output of `python collect_env.py` here

🐛 Describe the bug

I built vLLM from source and in my terminal I ran:

python -m vllm.entrypoints.openai.api_server \
  --model Qwen/Qwen1.5-MoE-A2.7B-Chat \
  --port 8080 \
  --dtype auto \
  --tensor-parallel-size 2 \
  --gpu-memory-utilization 0.92 \
  --max-model-len 4096 \
  --enable-lora \
  --lora-modules qwen_moe_lora=/data/lora/moe_lora_dummy \
  --log-level INFO

I got this error:

INFO 10-14 20:10:47 [__init__.py:224] Automatically detected platform cuda.
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/data/work/vllm/vllm/entrypoints/openai/api_server.py", line 41, in <module>
    from vllm.config import VllmConfig
  File "/data/work/vllm/vllm/config/__init__.py", line 15, in <module>
    from vllm.config.lora import LoRAConfig
  File "/data/work/vllm/vllm/config/lora.py", line 15, in <module>
    from vllm.platforms import current_platform
  File "/data/work/vllm/vllm/platforms/__init__.py", line 254, in __getattr__
    _current_platform = resolve_obj_by_qualname(platform_cls_qualname)()
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/work/vllm/vllm/utils/__init__.py", line 2504, in resolve_obj_by_qualname
    module = importlib.import_module(module_name)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/venv/main/lib/python3.12/importlib/__init__.py", line 90, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/data/work/vllm/vllm/platforms/cuda.py", line 19, in <module>
    import vllm._C  # noqa
    ^^^^^^^^^^^^^^
ImportError: /data/work/vllm/vllm/_C.abi3.so: undefined symbol: _Z20cutlass_moe_mm_sm100RN2at6TensorERKS0_S3_S3_S3_S3_S3_S3_S3_S3_bb

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions