Structure Coding
-> application
/root/
|-- app
| |-- internal
| |-- model
| |-- modules
| |-- routers
|-- covid.py
|-- iris.py
|-- item.py
|-- users.py
| |-- static
|-- github
|-- graph
| |-- dependencies.py
| |-- main.py
| |-- requirements.txt
|-- root -> /app/
from fastapi import APIRouter
from typing import Optional, Any, List
from sklearn import datasets
from sklearn.metrics import accuracy_score, classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from pydantic import BaseModel, conlist
router = APIRouter()
class Iris(BaseModel):
data: List[conlist(float, min_items=2, max_items=2)]
async def plot_features_iris(feature: int, preprocessing: Optional[bool] = False):
data = datasets.load_iris()
x = range(50)
X = StandardScaler().fit_transform(data.data[:, :])
p1, p2, p3 = data.data[:50, feature], data.data[50:100, feature], data.data[100:, feature]
plt.scatter(x, X[:50, feature] if preprocessing else p1, color='red')
plt.scatter(x, X[50:100, feature] if preprocessing else p2, color='blue')
plt.scatter(x, X[100:, feature] if preprocessing else p3, color='green')
plt.savefig('app/static/graph/{}.jpg'.format('petal_width' if feature == 3 else 'petal_length'))
return plt
async def dynamic_predict(model, preprocessing: Optional[bool] = False, X_one: Optional[Any] = None) -> tuple:
data = datasets.load_iris()
X = StandardScaler().fit_transform(data.data[:, 2:]) if preprocessing else data.data[:, 2:]
X_train, X_test, y_train, y_test = train_test_split(X, data.target, test_size=0.2, stratify=data.target)
X_test = X_test if X_one is None else X_one
clf = model
clf.fit(X_train, y_train)
predict = clf.predict(X_test)
log_proba = clf.predict_proba(X_test)
return clf, predict, y_test if X_one is None else None, log_proba
@router.get('/')
async def read_iris(
desc: Optional[str] = None,
):
data = datasets.load_iris()
if desc:
if desc == 'feature_names':
res = {'status': True, 'description': 'feature names', 'data': data.feature_names}
return res
elif desc == 'target_names':
res = {'status': True, 'description': 'feature target names', 'data': data.target_names.tolist()}
return res
elif desc == 'target':
res = {'status': True, 'description': 'feature target value', 'data': data.target.tolist()}
return res
else:
res = {'status': True, 'description': 'feature names', 'data': data.data.tolist()}
return res
@router.get('/{plot}')
async def _class(plot: Optional[str] = None, pp: Optional[bool] = False):
if plot == 'petal_length':
_plt = await plot_features_iris(3, preprocessing=(True if pp else False))
_plt.close()
return {'status': True, 'message': 'plot graph petal_width', 'data': '/static/graph/petal_length.jpg'}
elif plot == 'petal_width':
_plt = await plot_features_iris(2, preprocessing=(True if pp else False))
_plt.close()
return {'status': True, 'message': 'plot graph petal_width', 'data': '/static/graph/petal_width.jpg'}
@router.post('/prediction/{model}')
async def prediction(payload: Iris, model: Optional[str] = None, all: Optional[bool] = False,
pp: Optional[bool] = False):
__class = ['setosa', 'versicolor', 'virginica']
if model == 'knn':
if all:
_, predict, y_test, log_proba = await dynamic_predict(model=KNeighborsClassifier(),
preprocessing=(True if pp else False))
acc = accuracy_score(y_test, predict)
clf_report = classification_report(y_test, predict)
lst = [__class[x] for x in predict]
res = {'status': True, 'message': 'predict model KNN', 'predict': predict.tolist(),
'predict_name': lst, 'log_proba': log_proba.tolist(),
'y_true': y_test.tolist(), 'acc': float(acc),
'clf_report': clf_report}
return res
elif all is False:
payload = payload.dict()
_, predict, y_test, log_proba = await dynamic_predict(model=KNeighborsClassifier(), X_one=payload['data'],
preprocessing=(True if pp else False))
lst = [__class[x] for x in predict]
res = {'status': True, 'message': 'predict model KNN', 'predict': predict.tolist(),
'predict_name': lst, 'log_proba': log_proba.tolist(), 'y_true': None,
'acc': None,
'clf_report': None}
return res
Preview APIs Model Iris
Preview API Prediction Iris
Preview API Predict detail
Build && Setup Python
$ pipenv install
$ pipenv shell
$ pipenv install -r app/requirements.txt
$ uvicorn app.main:app --port 8500 --host 0.0.0.0
enjoy your code!