

 Skip to content

 Toggle navigation

 Sign in

 	

 Product

 	

 Actions

 Automate any workflow

	

 Packages

 Host and manage packages

	

 Security

 Find and fix vulnerabilities

	

 Codespaces

 Instant dev environments

	

 Copilot

 Write better code with AI

	

 Code review

 Manage code changes

	

 Issues

 Plan and track work

	

 Discussions

 Collaborate outside of code

 Explore
 	

 All features

	

 Documentation

	

 GitHub Skills

	

 Blog

	

 Solutions

 For
 	

 Enterprise

	

 Teams

	

 Startups

	

 Education

 By Solution
 	

 CI/CD & Automation

	

 DevOps

	

 DevSecOps

 Resources
 	

 Learning Pathways

	

 White papers, Ebooks, Webinars

	

 Customer Stories

	

 Partners

	

 Open Source

 	

 GitHub Sponsors

 Fund open source developers

 	

 The ReadME Project

 GitHub community articles

 Repositories
 	

 Topics

	

 Trending

	

 Collections

	
 Pricing

 Search or jump to...

 Search code, repositories, users, issues, pull requests...

 Search

 Clear

 Search syntax tips

 Provide feedback

 We read every piece of feedback, and take your input very seriously.

 Include my email address so I can be contacted

 Cancel

 Submit feedback

 Saved searches

 Use saved searches to filter your results more quickly

 Name

 Query

 To see all available qualifiers, see our documentation.

 Cancel

 Create saved search

 Sign in

 Sign up

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.
 You switched accounts on another tab or window. Reload to refresh your session.

Dismiss alert

 {{ message }}

 wojtekmaj

 /

 react-pdf

 Public

 	

	

Notifications

	

Fork
 815

	

 Star
 8.4k

	

 Display PDFs in your React app as easily as if they were images.

 projects.wojtekmaj.pl/react-pdf

 License

 MIT license

 8.4k
 stars

 815
 forks

 Branches

 Tags

 Activity

 Star

Notifications

 	

 Code

	

 Issues
 23

	

 Pull requests
 7

	

 Discussions

	

 Actions

	

 Wiki

	

 Security

	

 Insights

Additional navigation options

 	

 Code

	

 Issues

	

 Pull requests

	

 Discussions

	

 Actions

	

 Wiki

	

 Security

	

 Insights

 wojtekmaj/react-pdf

 This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 main

BranchesTags

Go to file

Code

Folders and files
	Name	Name	Last commit message
	Last commit date

	Latest commit

History
1,657 Commits

	
.github

	
.github

	
	

	
.husky

	
.husky

	
	

	
.vscode

	
.vscode

	
	

	
.yarn/plugins/@yarnpkg

	
.yarn/plugins/@yarnpkg

	
	

	
__mocks__

	
__mocks__

	
	

	
packages/react-pdf

	
packages/react-pdf

	
	

	
sample

	
sample

	
	

	
test

	
test

	
	

	
.gitattributes

	
.gitattributes

	
	

	
.gitignore

	
.gitignore

	
	

	
.lintstagedrc.json

	
.lintstagedrc.json

	
	

	
.mailmap

	
.mailmap

	
	

	
.prettierignore

	
.prettierignore

	
	

	
.prettierrc.json

	
.prettierrc.json

	
	

	
.yarnrc.yml

	
.yarnrc.yml

	
	

	
LICENSE

	
LICENSE

	
	

	
README.md

	
README.md

	
	

	
package.json

	
package.json

	
	

	
test-utils.ts

	
test-utils.ts

	
	

	
yarn.lock

	
yarn.lock

	
	

	View all files

Repository files navigation
	README
	MIT license

React-PDF

Display PDFs in your React app as easily as if they were images.

Lost?

This package is used to display existing PDFs. If you wish to create PDFs using React, you may be looking for @react-pdf/renderer.

tl;dr

	Install by executing npm install react-pdf or yarn add react-pdf.
	Import by adding import { Document } from 'react-pdf'.
	Use by adding <Document file="..." />. file can be a URL, base64 content, Uint8Array, and more.
	Put <Page /> components inside <Document /> to render pages.

Demo

A minimal demo page can be found in sample directory.

Online demo is also available!

Before you continue

React-PDF is under constant development. This documentation is written for React-PDF 7.x branch. If you want to see documentation for other versions of React-PDF, use dropdown on top of GitHub page to switch to an appropriate tag. Here are quick links to the newest docs from each branch:

	v6.x
	v5.x
	v4.x
	v3.x
	v2.x
	v1.x

Getting started

Compatibility

Browser support

React-PDF supports all modern browsers. It is tested with the latest versions of Chrome, Edge, Safari, Firefox, and Opera.

The following browsers are supported out of the box in React-PDF v7:

	Chrome ≥92
	Edge ≥92
	Safari ≥15.4
	Firefox ≥90

You may extend the list of supported browsers by providing additional polyfills (e.g. for Array.prototype.at or Promise.allSettled) and either configuring your bundler to transpile pdfjs-dist and using legacy PDF.js worker.

If you need to support older browsers, you will need to use React-PDF v6 or v5.

If you need to support Internet Explorer 11, you will need to use React-PDF v4.

React

To use the latest version of React-PDF, your project needs to use React 16.8 or later.

If you use an older version of React, please refer to the table below to a find suitable React-PDF version.

	React version	Newest compatible React-PDF version
	≥16.8	latest
	≥16.3	5.x
	≥15.5	4.x

Preact

React-PDF may be used with Preact.

Installation

Add React-PDF to your project by executing npm install react-pdf or yarn add react-pdf.

Next.js

If you use Next.js, you may need to add the following to your next.config.js:

module.exports = {
+ webpack: (config) => {
+ config.resolve.alias.canvas = false;

+ return config;
+ },
}

Configure PDF.js worker

For React-PDF to work, PDF.js worker needs to be provided. You have several options.

Import worker (recommended)

For most cases, the following example will work:

import { pdfjs } from 'react-pdf';

pdfjs.GlobalWorkerOptions.workerSrc = new URL(
 'pdfjs-dist/build/pdf.worker.min.js',
 import.meta.url,
).toString();

Note
In Next.js:

	Using App Router, make sure to add 'use client'; to the top of the file.
	Using Pages Router, make sure to disable SSR when importing the component you're using this code in.

Note
pnpm requires an .npmrc file with public-hoist-pattern[]=pdfjs-dist for this to work.

See more examples
Parcel 2

For Parcel 2, you need to use a slightly different code:

 pdfjs.GlobalWorkerOptions.workerSrc = new URL(
- 'pdfjs-dist/build/pdf.worker.min.js',
+ 'npm:pdfjs-dist/build/pdf.worker.min.js',
 import.meta.url,
).toString();

Copy worker to public directory

You will have to make sure on your own that pdf.worker.js file from pdfjs-dist/build is copied to your project's output folder.

For example, you could use a custom script like:

import path from 'node:path';
import fs from 'node:fs';

const pdfjsDistPath = path.dirname(require.resolve('pdfjs-dist/package.json'));
const pdfWorkerPath = path.join(pdfjsDistPath, 'build', 'pdf.worker.js');

fs.copyFileSync(pdfWorkerPath, './dist/pdf.worker.js');

Use external CDN

import { pdfjs } from 'react-pdf';

pdfjs.GlobalWorkerOptions.workerSrc = `//unpkg.com/pdfjs-dist@${pdfjs.version}/build/pdf.worker.min.js`;

Legacy PDF.js worker

If you need to support older browsers, you may use legacy PDF.js worker. To do so, follow the instructions above, but replace /build/ with legacy/build/ in PDF.js worker import path, for example:

 pdfjs.GlobalWorkerOptions.workerSrc = new URL(
- 'pdfjs-dist/build/pdf.worker.min.js',
+ 'pdfjs-dist/legacy/build/pdf.worker.min.js',
 import.meta.url,
).toString();

or:

-pdfjs.GlobalWorkerOptions.workerSrc = `//unpkg.com/pdfjs-dist@${pdfjs.version}/build/pdf.worker.min.js`;
+pdfjs.GlobalWorkerOptions.workerSrc = `//unpkg.com/pdfjs-dist@${pdfjs.version}/legacy/build/pdf.worker.min.js`;

Usage

Here's an example of basic usage:

import { useState } from 'react';
import { Document, Page } from 'react-pdf';

function MyApp() {
 const [numPages, setNumPages] = useState<number>();
 const [pageNumber, setPageNumber] = useState<number>(1);

 function onDocumentLoadSuccess({ numPages }: { numPages: number }): void {
 setNumPages(numPages);
 }

 return (
 <div>
 <Document file="somefile.pdf" onLoadSuccess={onDocumentLoadSuccess}>
 <Page pageNumber={pageNumber} />
 </Document>
 <p>
 Page {pageNumber} of {numPages}
 </p>
 </div>
);
}

Check the sample directory in this repository for a full working example. For more examples and more advanced use cases, check Recipes in React-PDF Wiki.

Support for annotations

If you want to use annotations (e.g. links) in PDFs rendered by React-PDF, then you would need to include stylesheet necessary for annotations to be correctly displayed like so:

import 'react-pdf/dist/Page/AnnotationLayer.css';

Support for text layer

If you want to use text layer in PDFs rendered by React-PDF, then you would need to include stylesheet necessary for text layer to be correctly displayed like so:

import 'react-pdf/dist/Page/TextLayer.css';

Support for non-latin characters

If you want to ensure that PDFs with non-latin characters will render perfectly, or you have encountered the following warning:

Warning: The CMap "baseUrl" parameter must be specified, ensure that the "cMapUrl" and "cMapPacked" API parameters are provided.

then you would also need to include cMaps in your build and tell React-PDF where they are.

Copying cMaps

First, you need to copy cMaps from pdfjs-dist (React-PDF's dependency - it should be in your node_modules if you have React-PDF installed). cMaps are located in pdfjs-dist/cmaps.

Vite

Add vite-plugin-static-copy by executing npm install vite-plugin-static-copy --save-dev or yarn add vite-plugin-static-copy --dev and add the following to your Vite config:

+import path from 'node:path';
+import { createRequire } from 'node:module';

-import { defineConfig } from 'vite';
+import { defineConfig, normalizePath } from 'vite';
+import { viteStaticCopy } from 'vite-plugin-static-copy';

+const require = createRequire(import.meta.url);
+const cMapsDir = normalizePath(
+ path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'cmaps')
+);

export default defineConfig({
 plugins: [
+ viteStaticCopy({
+ targets: [
+ {
+ src: cMapsDir,
+ dest: '',
+ },
+],
+ }),
]
});

Webpack

Add copy-webpack-plugin by executing npm install copy-webpack-plugin --save-dev or yarn add copy-webpack-plugin --dev and add the following to your Webpack config:

+import path from 'node:path';
+import CopyWebpackPlugin from 'copy-webpack-plugin';

+const cMapsDir = path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'cmaps');

module.exports = {
 plugins: [
+ new CopyWebpackPlugin({
+ patterns: [
+ {
+ from: cMapsDir,
+ to: 'cmaps/'
+ },
+],
+ }),
],
};

Other tools

If you use other bundlers, you will have to make sure on your own that cMaps are copied to your project's output folder.

For example, you could use a custom script like:

import path from 'node:path';
import fs from 'node:fs';

const cMapsDir = path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'cmaps');

fs.cpSync(cMapsDir, 'dist/cmaps/', { recursive: true });

Setting up React-PDF

Now that you have cMaps in your build, pass required options to Document component by using options prop, like so:

// Outside of React component
const options = {
 cMapUrl: '/cmaps/',
};

// Inside of React component
<Document options={options} />;

Note
Make sure to define options object outside of your React component, and use useMemo if you can't.

Alternatively, you could use cMaps from external CDN:

// Outside of React component
import { pdfjs } from 'react-pdf';

const options = {
 cMapUrl: `https://unpkg.com/pdfjs-dist@${pdfjs.version}/cmaps/`,
};

// Inside of React component
<Document options={options} />;

Support for standard fonts

If you want to support PDFs using standard fonts (deprecated in PDF 1.5, but still around), ot you have encountered the following warning:

The standard font "baseUrl" parameter must be specified, ensure that the "standardFontDataUrl" API parameter is provided.

then you would also need to include standard fonts in your build and tell React-PDF where they are.

Copying fonts

First, you need to copy standard fonts from pdfjs-dist (React-PDF's dependency - it should be in your node_modules if you have React-PDF installed). Standard fonts are located in pdfjs-dist/standard_fonts.

Vite

Add vite-plugin-static-copy by executing npm install vite-plugin-static-copy --save-dev or yarn add vite-plugin-static-copy --dev and add the following to your Vite config:

+import path from 'node:path';
+import { createRequire } from 'node:module';

-import { defineConfig } from 'vite';
+import { defineConfig, normalizePath } from 'vite';
+import { viteStaticCopy } from 'vite-plugin-static-copy';

+const require = createRequire(import.meta.url);
+const standardFontsDir = normalizePath(
+ path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'standard_fonts')
+);

export default defineConfig({
 plugins: [
+ viteStaticCopy({
+ targets: [
+ {
+ src: standardFontsDir,
+ dest: '',
+ },
+],
+ }),
]
});

Webpack

Add copy-webpack-plugin by executing npm install copy-webpack-plugin --save-dev or yarn add copy-webpack-plugin --dev and add the following to your Webpack config:

+import path from 'node:path';
+import CopyWebpackPlugin from 'copy-webpack-plugin';

+const standardFontsDir = path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'standard_fonts');

module.exports = {
 plugins: [
+ new CopyWebpackPlugin({
+ patterns: [
+ {
+ from: standardFontsDir,
+ to: 'standard_fonts/'
+ },
+],
+ }),
],
};

Other tools

If you use other bundlers, you will have to make sure on your own that standard fonts are copied to your project's output folder.

For example, you could use a custom script like:

import path from 'node:path';
import fs from 'node:fs';

const standardFontsDir = path.join(
 path.dirname(require.resolve('pdfjs-dist/package.json')),
 'standard_fonts',
);

fs.cpSync(standardFontsDir, 'dist/standard_fonts/', { recursive: true });

Setting up React-PDF

Now that you have standard fonts in your build, pass required options to Document component by using options prop, like so:

// Outside of React component
const options = {
 standardFontDataUrl: '/standard_fonts/',
};

// Inside of React component
<Document options={options} />;

Note
Make sure to define options object outside of your React component, and use useMemo if you can't.

Alternatively, you could use standard fonts from external CDN:

// Outside of React component
import { pdfjs } from 'react-pdf';

const options = {
 standardFontDataUrl: `https://unpkg.com/pdfjs-dist@${pdfjs.version}/standard_fonts`,
};

// Inside of React component
<Document options={options} />;

User guide

Document

Loads a document passed using file prop.

Props

	Prop name	Description	Default value	Example values
	className	Class name(s) that will be added to rendered element along with the default react-pdf__Document.	n/a		String:
"custom-class-name-1 custom-class-name-2"
	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	error	What the component should display in case of an error.	"Failed to load PDF file."		String:
"An error occurred!"
	React element:
<p>An error occurred!</p>
	Function:
this.renderError

	externalLinkRel	Link rel for links rendered in annotations.	"noopener noreferrer nofollow"	One of valid values for rel attribute.	"noopener"
	"noreferrer"
	"nofollow"
	"noopener noreferrer"

	externalLinkTarget	Link target for external links rendered in annotations.	unset, which means that default behavior will be used	One of valid values for target attribute.	"_self"
	"_blank"
	"_parent"
	"_top"

	file	What PDF should be displayed.
Its value can be an URL, a file (imported using import … from … or from file input form element), or an object with parameters (url - URL; data - data, preferably Uint8Array; range - PDFDataRangeTransport.
Warning: Since equality check (===) is used to determine if file object has changed, it must be memoized by setting it in component's state, useMemo or other similar technique.	n/a		URL:
"https://example.com/sample.pdf"
	File:
import importedPdf from '../static/sample.pdf' and then
sample
	Parameter object:
{ url: 'https://example.com/sample.pdf' }

	imageResourcesPath	The path used to prefix the src attributes of annotation SVGs.	n/a (pdf.js will fallback to an empty string)	"/public/images/"
	inputRef	A prop that behaves like ref, but it's passed to main <div> rendered by <Document> component.	n/a		Function:
(ref) => { this.myDocument = ref; }
	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}
	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	loading	What the component should display while loading.	"Loading PDF…"		String:
"Please wait!"
	React element:
<p>Please wait!</p>
	Function:
this.renderLoader

	noData	What the component should display in case of no data.	"No PDF file specified."		String:
"Please select a file."
	React element:
<p>Please select a file.</p>
	Function:
this.renderNoData

	onItemClick	Function called when an outline item or a thumbnail has been clicked. Usually, you would like to use this callback to move the user wherever they requested to.	n/a	({ dest, pageIndex, pageNumber }) => alert('Clicked an item from page ' + pageNumber + '!')
	onLoadError	Function called in case of an error while loading a document.	n/a	(error) => alert('Error while loading document! ' + error.message)
	onLoadProgress	Function called, potentially multiple times, as the loading progresses.	n/a	({ loaded, total }) => alert('Loading a document: ' + (loaded / total) * 100 + '%')
	onLoadSuccess	Function called when the document is successfully loaded.	n/a	(pdf) => alert('Loaded a file with ' + pdf.numPages + ' pages!')
	onPassword	Function called when a password-protected PDF is loaded.	Function that prompts the user for password.	(callback) => callback('s3cr3t_p4ssw0rd')
	onSourceError	Function called in case of an error while retrieving document source from file prop.	n/a	(error) => alert('Error while retrieving document source! ' + error.message)
	onSourceSuccess	Function called when document source is successfully retrieved from file prop.	n/a	() => alert('Document source retrieved!')
	options	An object in which additional parameters to be passed to PDF.js can be defined. Most notably:	cMapUrl;
	httpHeaders - custom request headers, e.g. for authorization);
	withCredentials - a boolean to indicate whether or not to include cookies in the request (defaults to false)

For a full list of possible parameters, check PDF.js documentation on DocumentInitParameters. Note: Make sure to define options object outside of your React component, and use useMemo if you can't.	n/a	{ cMapUrl: '/cmaps/' }
	renderMode	Rendering mode of the document. Can be "canvas", "custom", "none" or "svg". If set to "custom", customRenderer must also be provided.
Warning: SVG render mode is deprecated and will be removed in the future.	"canvas"	"custom"
	rotate	Rotation of the document in degrees. If provided, will change rotation globally, even for the pages which were given rotate prop of their own. 90 = rotated to the right, 180 = upside down, 270 = rotated to the left.	n/a	90

Page

Displays a page. Should be placed inside <Document />. Alternatively, it can have pdf prop passed, which can be obtained from <Document />'s onLoadSuccess callback function, however some advanced functions like rendering annotations and linking between pages inside a document may not be working correctly.

Props

	Prop name	Description	Default value	Example values
	canvasBackground	Canvas background color. Any valid canvas.fillStyle can be used. If you set renderMode to "svg" this prop will be ignored.	n/a	"transparent"
	canvasRef	A prop that behaves like ref, but it's passed to <canvas> rendered by <PageCanvas> component. If you set renderMode to "svg" this prop will be ignored.	n/a		Function:
(ref) => { this.myCanvas = ref; }
	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}
	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	className	Class name(s) that will be added to rendered element along with the default react-pdf__Page.	n/a		String:
"custom-class-name-1 custom-class-name-2"
	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	customRenderer	Function that customizes how a page is rendered. You must set renderMode to "custom" to use this prop.	n/a	MyCustomRenderer
	customTextRenderer	Function that customizes how a text layer is rendered.	n/a	({ str, itemIndex }) => str.replace(/ipsum/g, value => `<mark>${value}</mark>`)
	devicePixelRatio	The ratio between physical pixels and device-independent pixels (DIPs) on the current device.	window.devicePixelRatio	1
	error	What the component should display in case of an error.	"Failed to load the page."		String:
"An error occurred!"
	React element:
<p>An error occurred!</p>
	Function:
this.renderError

	height	Page height. If neither height nor width are defined, page will be rendered at the size defined in PDF. If you define width and height at the same time, height will be ignored. If you define height and scale at the same time, the height will be multiplied by a given factor.	Page's default height	300
	imageResourcesPath	The path used to prefix the src attributes of annotation SVGs.	n/a (pdf.js will fallback to an empty string)	"/public/images/"
	inputRef	A prop that behaves like ref, but it's passed to main <div> rendered by <Page> component.	n/a		Function:
(ref) => { this.myPage = ref; }
	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}
	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	loading	What the component should display while loading.	"Loading page…"		String:
"Please wait!"
	React element:
<p>Please wait!</p>
	Function:
this.renderLoader

	noData	What the component should display in case of no data.	"No page specified."		String:
"Please select a page."
	React element:
<p>Please select a page.</p>
	Function:
this.renderNoData

	onGetAnnotationsError	Function called in case of an error while loading annotations.	n/a	(error) => alert('Error while loading annotations! ' + error.message)
	onGetAnnotationsSuccess	Function called when annotations are successfully loaded.	n/a	(annotations) => alert('Now displaying ' + annotations.length + ' annotations!')
	onGetStructTreeError	Function called in case of an error while loading structure tree.	n/a	(error) => alert('Error while loading structure tree! ' + error.message)
	onGetStructTreeSuccess	Function called when structure tree is successfully loaded.	n/a	(structTree) => alert(JSON.stringify(structTree))
	onGetTextError	Function called in case of an error while loading text layer items.	n/a	(error) => alert('Error while loading text layer items! ' + error.message)
	onGetTextSuccess	Function called when text layer items are successfully loaded.	n/a	({ items, styles }) => alert('Now displaying ' + items.length + ' text layer items!')
	onLoadError	Function called in case of an error while loading the page.	n/a	(error) => alert('Error while loading page! ' + error.message)
	onLoadSuccess	Function called when the page is successfully loaded.	n/a	(page) => alert('Now displaying a page number ' + page.pageNumber + '!')
	onRenderAnnotationLayerError	Function called in case of an error while rendering the annotation layer.	n/a	(error) => alert('Error while loading annotation layer! ' + error.message)
	onRenderAnnotationLayerSuccess	Function called when annotations are successfully rendered on the screen.	n/a	() => alert('Rendered the annotation layer!')
	onRenderError	Function called in case of an error while rendering the page.	n/a	(error) => alert('Error while loading page! ' + error.message)
	onRenderSuccess	Function called when the page is successfully rendered on the screen.	n/a	() => alert('Rendered the page!')
	onRenderTextLayerError	Function called in case of an error while rendering the text layer.	n/a	(error) => alert('Error while rendering text layer! ' + error.message)
	onRenderTextLayerSuccess	Function called when the text layer is successfully rendered on the screen.	n/a	() => alert('Rendered the text layer!')
	pageIndex	Which page from PDF file should be displayed, by page index. Ignored if pageNumber prop is provided.	0	1
	pageNumber	Which page from PDF file should be displayed, by page number. If provided, pageIndex prop will be ignored.	1	2
	pdf	pdf object obtained from <Document />'s onLoadSuccess callback function.	(automatically obtained from parent <Document />)	pdf
	renderAnnotationLayer	Whether annotations (e.g. links) should be rendered.	true	false
	renderForms	Whether forms should be rendered. renderAnnotationLayer prop must be set to true.	false	true
	renderMode	Rendering mode of the document. Can be "canvas", "custom", "none" or "svg". If set to "custom", customRenderer must also be provided.
Warning: SVG render mode is deprecated and will be removed in the future.	"canvas"	"custom"
	renderTextLayer	Whether a text layer should be rendered.	true	false
	rotate	Rotation of the page in degrees. 90 = rotated to the right, 180 = upside down, 270 = rotated to the left.	Page's default setting, usually 0	90
	scale	Page scale.	1	0.5
	width	Page width. If neither height nor width are defined, page will be rendered at the size defined in PDF. If you define width and height at the same time, height will be ignored. If you define width and scale at the same time, the width will be multiplied by a given factor.	Page's default width	300

Outline

Displays an outline (table of contents). Should be placed inside <Document />. Alternatively, it can have pdf prop passed, which can be obtained from <Document />'s onLoadSuccess callback function.

Props

	Prop name	Description	Default value	Example values
	className	Class name(s) that will be added to rendered element along with the default react-pdf__Outline.	n/a		String:
"custom-class-name-1 custom-class-name-2"
	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	inputRef	A prop that behaves like ref, but it's passed to main <div> rendered by <Outline> component.	n/a		Function:
(ref) => { this.myOutline = ref; }
	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}
	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	onItemClick	Function called when an outline item has been clicked. Usually, you would like to use this callback to move the user wherever they requested to.	n/a	({ dest, pageIndex, pageNumber }) => alert('Clicked an item from page ' + pageNumber + '!')
	onLoadError	Function called in case of an error while retrieving the outline.	n/a	(error) => alert('Error while retrieving the outline! ' + error.message)
	onLoadSuccess	Function called when the outline is successfully retrieved.	n/a	(outline) => alert('The outline has been successfully retrieved.')

Thumbnail

Displays a thumbnail of a page. Does not render the annotation layer or the text layer. Does not register itself as a link target, so the user will not be scrolled to a Thumbnail component when clicked on an internal link (e.g. in Table of Contents). When clicked, attempts to navigate to the page clicked (similarly to a link in Outline). Should be placed inside <Document />. Alternatively, it can have pdf prop passed, which can be obtained from <Document />'s onLoadSuccess callback function.

Props

Props are the same as in <Page /> component, but certain annotation layer and text layer-related props are not available:

	customTextRenderer
	onGetAnnotationsError
	onGetAnnotationsSuccess
	onGetTextError
	onGetTextSuccess
	onRenderAnnotationLayerError
	onRenderAnnotationLayerSuccess
	onRenderTextLayerError
	onRenderTextLayerSuccess
	renderAnnotationLayer
	renderForms
	renderTextLayer

On top of that, additional props are available:

	Prop name	Description	Default value	Example values
	className	Class name(s) that will be added to rendered element along with the default react-pdf__Thumbnail.	n/a		String:
"custom-class-name-1 custom-class-name-2"
	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	onItemClick	Function called when a thumbnail has been clicked. Usually, you would like to use this callback to move the user wherever they requested to.	n/a	({ dest, pageIndex, pageNumber }) => alert('Clicked an item from page ' + pageNumber + '!')

Useful links

	React-PDF Wiki

License

The MIT License.

Author

	

 	
 Wojciech Maj

Thank you

This project wouldn't be possible without the awesome work of Niklas Närhinen who created its original version and without Mozilla, author of pdf.js. Thank you!

Sponsors

Thank you to all our sponsors! Become a sponsor and get your image on our README on GitHub.

Backers

Thank you to all our backers! Become a backer and get your image on our README on GitHub.

Top Contributors

Thank you to all our contributors that helped on this project!

 About

 Display PDFs in your React app as easily as if they were images.

 projects.wojtekmaj.pl/react-pdf

 Topics

 react

 pdf

 pdf-viewer

 Resources

 Readme

 License

 MIT license

 Activity

 Stars

 8.4k
 stars

 Watchers

 57
 watching

 Forks

 815
 forks

 Report repository

 Releases
 139

 v7.7.1

 Latest

 Feb 21, 2024

 + 138 releases

Sponsor this project

 	

 	

 opencollective.com/react-pdf-wojtekmaj

 Learn more about GitHub Sponsors

 Used by 53.5k

 	

	

	

	

	

	

	

	

 + 53,484

 Contributors
 60

 	

	

	

	

	

	

	

	

	

	

	

	

	

	

 + 46 contributors

 Languages

	

 TypeScript
 94.5%

	

 CSS
 5.4%

	

 HTML
 0.1%

 Footer

 © 2024 GitHub, Inc.

 Footer navigation

 	
 Terms

	
 Privacy

	
 Security

	
 Status

	
 Docs

	
 Contact

	

 Manage cookies

	

 Do not share my personal information

 You can’t perform that action at this time.

