Source code for our paper "A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data". The code was built based on CMPNN (https://github.com/SY575/CMPNN), DeepReac (https://github.com/bm2-lab/DeepReac), YieldBert (https://github.com/bm2-lab/DeepReac). Thanks a lot for their sharing.
| Dataset | Methods | R2 | MAE | RMSE |
|---|---|---|---|---|
| Dataset1 | GraphRXN-concat | 0.951 | 4.30 | 5.98 |
| Dataset1 | GraphRXN-sum | 0.937 | 4.85 | 6.80 |
| Dataset1 | Yield-BERT | 0.951 | 4.00 | 6.03 |
| Dataset1 | DeepReac+ | 0.922 | 5.25 | 7.54 |
| Dataset2 | GraphRXN-concat | 0.844 | 7.94 | 11.08 |
| Dataset2 | GraphRXN-sum | 0.838 | 8.09 | 11.29 |
| Dataset2 | Yield-BERT | 0.815 | 8.13 | 12.08 |
| Dataset2 | DeepReac+ | 0.827 | 8.06 | 11.65 |
| Dataset3 | GraphRXN-concat | 0.892 | 0.16 | 0.23 |
| Dataset3 | GraphRXN-sum | 0.881 | 0.18 | 0.24 |
| Dataset3 | Yield-BERT | 0.886 | 0.16 | 0.24 |
| Dataset3 | DeepReac+ | 0.853 | 0.18 | 0.25 |
| Groupe | Size | methods | R2 | MAE | RMSE |
|---|---|---|---|---|---|
| Entire | 1558 | GraphRXN-concat | 0.713 | 0.06 | 0.09 |
| Entire | 1558 | GraphRXN-sum | 0.704 | 0.06 | 0.09 |
| Entire | 1558 | Yield-BERT | 0.645 | 0.10 | 0.07 |
| Entire | 1558 | DeepReac+ | 0.610 | 0.07 | 0.10 |
| G1 | 317 | GraphRXN-concat | 0.661 | 0.08 | 0.11 |
| G1 | 317 | GraphRXN-sum | 0.462 | 0.11 | 0.14 |
| G1 | 317 | Yield-BERT | 0.718 | 0.07 | 0.10 |
| G1 | 317 | DeepReac+ | 0.551 | 0.09 | 0.13 |
| G2 | 419 | GraphRXN-concat | 0.629 | 0.05 | 0.07 |
| G2 | 419 | GraphRXN-sum | 0.592 | 0.06 | 0.07 |
| G2 | 419 | Yield-BERT | 0.512 | 0.06 | 0.08 |
| G2 | 419 | DeepReac+ | 0.528 | 0.06 | 0.08 |
| G3 | 401 | GraphRXN-concat | 0.802 | 0.06 | 0.08 |
| G3 | 401 | GraphRXN-sum | 0.775 | 0.06 | 0.08 |
| G3 | 401 | Yield-BERT | 0.785 | 0.06 | 0.08 |
| G3 | 401 | DeepReac+ | 0.745 | 0.07 | 0.09 |
| G4 | 421 | GraphRXN-concat | 0.459 | 0.08 | 0.12 |
| G4 | 421 | GraphRXN-sum | 0.419 | 0.09 | 0.12 |
| G4 | 421 | Yield-BERT | 0.503 | 0.08 | 0.11 |
| G4 | 421 | DeepReac+ | 0.23 | 0.10 | 0.14 |
conda env create -f GraphRXN.yaml ### Create GraphRXN env
conda activate GraphRXN
python reaction_train.py --data_path data_scaler/Buchward-Hartwig/random_split/FullCV_01_train_temp_scaler.csv
--separate_test_path data_scaler/Buchward-Hartwig/random_split/FullCV_01_test_temp_scaler.csv
--dataset_type regression
--num_folds 1
--gpu 0
--epochs 100
--batch_size 128
--save_dir ./result/Buchward/concat_01_temp
--metric r2
--reaction_agg_method concat
Note: If choosing summation aggregation method, please specify --reaction_agg_method sum
cd DeepReac
conda env create -f DeepReact.yaml ### Create DeepReac+ env
conda activate DeepReact
### train and predict
python DeepReac_train.py -train data_scaler/Buchward-Hartwig/random_split/FullCV_01_train_temp_scaler.csv
-test data_scaler/Buchward-Hartwig/random_split/FullCV_01_test_temp_scaler.csv
-epochs 100
-stats ./result_scaler/Buchward_01_test_stats.csv
cd Yield-BERT
conda env create -f rxnyields.yaml ### create Yield-BERT env
conda activate rxnyields
cd yield-BERT_baseline
### For Dataset 1 (Buchwald) training
python launch_buchwald_hartwig_training.py
### For Dataset 2 (Suzuki) training
python lauch_suzuki_miyaura_training.py
### For Dataset 3 (Denmark) training
python data3_training_10cv.py
### For in-house dataset training
python inhouse_data_transform.py




