Track, Inpaint, Resplat: Subject-driven 3D and 4D generation with Progressive Texture Infilling (NeurIPS 2025)
We utilize CoTracker to obtain the inpainting masks.
First, we need to prepare the input frames as below:
── DIR_TO_FRAMES
└── frames
└── 1.png
└── 2.png
└── ...
└── 180.png
└── mask
└── 1.png
└── 2.png
└── ...
└── 180.pngInside the track folder:
cd track
python generate_tracking_traj.py --frames_dir {DIR_TO_FRAMES}/frames --output_dir <path_to_output> --start_frame 0
python generate_tracking_traj.py --frames_dir {DIR_TO_FRAMES}/frames --output_dir <path_to_output> --start_frame 45Then, we can visualize the masks rendered with the Track stage:
python visualize_tracking.py --frames_dir {DIR_TO_FRAMES}/frames --traj_dir <path_to_trajectories> --save_dir <path_to_mask_visualization> --start_frame 0
python visualize_tracking.py --frames_dir {DIR_TO_FRAMES}/frames --traj_dir <path_to_trajectories> --save_dir <path_to_mask_visualization> --start_frame 45- Release GitHub repo.
- Release arXiv paper.
- Code for Track stage.
- Code for Inpaint stage.
- Code for Resplat stage.
If you find our work useful, please consider citing:
@inproceedings{zheng2025trackinpaintresplat,
title={Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling},
author={Zheng, Shuhong and Mirzaei, Ashkan and Gilitschenski, Igor},
booktitle={NeurIPS},
year={2025}
}