-
Notifications
You must be signed in to change notification settings - Fork 33
Add support in JAX backend for PEtab v2 #3115
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
1885911
1e5bfeb
ff35c15
973aaa1
36f16e6
865c340
2279cca
599b8b5
52fea34
dbf43c1
fab9f6f
ebd0c0c
c19b183
0961646
b8c1a8c
60e7cf5
b4aed26
e63b748
6efc38e
b0d7ad1
c33f01d
5c1b30e
b4aecfd
b382c1f
8223a61
a1d88c3
2746d5b
693e29b
607781b
828016c
e3126f5
df88e31
720980c
8286033
590fa97
781957c
5bbd612
48b13d6
bfba95c
89b52a1
a1aefbc
a9a6913
56763ad
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -32,7 +32,8 @@ | |
| "outputs": [], | ||
| "source": [ | ||
| "import petab.v1 as petab\n", | ||
| "from amici.importers.petab.v1 import import_petab_problem\n", | ||
| "from amici.importers.petab import *\n", | ||
| "from petab.v2 import Problem\n", | ||
| "\n", | ||
| "# Define the model name and YAML file location\n", | ||
| "model_name = \"Boehm_JProteomeRes2014\"\n", | ||
|
|
@@ -41,14 +42,20 @@ | |
| " f\"master/Benchmark-Models/{model_name}/{model_name}.yaml\"\n", | ||
| ")\n", | ||
| "\n", | ||
| "# Load the PEtab problem from the YAML file\n", | ||
| "petab_problem = petab.Problem.from_yaml(yaml_url)\n", | ||
| "# Load the PEtab problem from the YAML file as a PEtab v2 problem\n", | ||
| "# (the JAX backend only supports PEtab v2)\n", | ||
| "petab_problem = Problem.from_yaml(yaml_url)\n", | ||
| "\n", | ||
| "# Import the PEtab problem as a JAX-compatible AMICI problem\n", | ||
| "jax_problem = import_petab_problem(\n", | ||
| " petab_problem,\n", | ||
| " verbose=False, # no text output\n", | ||
| " jax=True, # return jax problem\n", | ||
| "pi = PetabImporter(\n", | ||
| " petab_problem=petab_problem,\n", | ||
| " module_name=model_name,\n", | ||
| " compile_=True,\n", | ||
| " jax=True,\n", | ||
| ")\n", | ||
| "\n", | ||
| "jax_problem = pi.create_simulator(\n", | ||
| " force_import=True,\n", | ||
| ")" | ||
| ] | ||
| }, | ||
|
|
@@ -75,6 +82,16 @@ | |
| "llh, results = run_simulations(jax_problem)" | ||
| ] | ||
| }, | ||
| { | ||
| "cell_type": "code", | ||
| "execution_count": null, | ||
| "id": "6c5b2980-13f0-42e9-b13e-0fce05793910", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "results" | ||
| ] | ||
| }, | ||
| { | ||
| "cell_type": "markdown", | ||
| "id": "415962751301c64a", | ||
|
|
@@ -90,11 +107,11 @@ | |
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "# Define the simulation condition\n", | ||
| "simulation_condition = (\"model1_data1\",)\n", | ||
| "# # Define the simulation condition\n", | ||
| "experiment_condition = \"_petab_experiment_condition___default__\"\n", | ||
| "\n", | ||
| "# Access the results for the specified condition\n", | ||
| "ic = results[\"simulation_conditions\"].index(simulation_condition)\n", | ||
| "# # Access the results for the specified condition\n", | ||
| "ic = results[\"dynamic_conditions\"].index(experiment_condition)\n", | ||
| "print(\"llh: \", results[\"llh\"][ic])\n", | ||
| "print(\"state variables: \", results[\"x\"][ic, :])" | ||
| ] | ||
|
|
@@ -146,8 +163,8 @@ | |
| "import matplotlib.pyplot as plt\n", | ||
| "import numpy as np\n", | ||
| "\n", | ||
| "# Define the simulation condition\n", | ||
| "simulation_condition = (\"model1_data1\",)\n", | ||
| "# Define the experiment condition\n", | ||
| "experiment_condition = \"_petab_experiment_condition___default__\"\n", | ||
| "\n", | ||
| "\n", | ||
| "def plot_simulation(results):\n", | ||
|
|
@@ -158,7 +175,7 @@ | |
| " results (dict): Simulation results from run_simulations.\n", | ||
| " \"\"\"\n", | ||
| " # Extract the simulation results for the specific condition\n", | ||
| " ic = results[\"simulation_conditions\"].index(simulation_condition)\n", | ||
| " ic = results[\"dynamic_conditions\"].index(experiment_condition)\n", | ||
| "\n", | ||
| " # Create a new figure for the state trajectories\n", | ||
| " plt.figure(figsize=(8, 6))\n", | ||
|
|
@@ -172,7 +189,7 @@ | |
| " # Add labels, legend, and grid\n", | ||
| " plt.xlabel(\"Time\")\n", | ||
| " plt.ylabel(\"State Values\")\n", | ||
| " plt.title(simulation_condition)\n", | ||
| " plt.title(experiment_condition)\n", | ||
| " plt.legend()\n", | ||
| " plt.grid(True)\n", | ||
| " plt.show()\n", | ||
|
|
@@ -187,18 +204,7 @@ | |
| "id": "4fa97c33719c2277", | ||
| "metadata": {}, | ||
| "source": [ | ||
| "`run_simulations` enables users to specify the simulation conditions to be executed. For more complex models, this allows for restricting simulations to a subset of conditions. Since the Böhm model includes only a single condition, we demonstrate this functionality by simulating no condition at all." | ||
| ] | ||
| }, | ||
| { | ||
| "cell_type": "code", | ||
| "execution_count": null, | ||
| "id": "7950774a3e989042", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "llh, results = run_simulations(jax_problem, simulation_conditions=tuple())\n", | ||
| "results" | ||
| "`run_simulations` enables users to specify the simulation experiments to be executed. For more complex models, this allows for restricting simulations to a subset of experiments by passing a tuple of experiment ids under the keyword `simulation_experiments` to `run_simulations`." | ||
| ] | ||
| }, | ||
| { | ||
|
|
@@ -384,8 +390,8 @@ | |
| "from amici.jax import ReturnValue\n", | ||
| "\n", | ||
| "# Define the simulation condition\n", | ||
| "simulation_condition = (\"model1_data1\",)\n", | ||
| "ic = jax_problem.simulation_conditions.index(simulation_condition)\n", | ||
| "experiment_condition = \"_petab_experiment_condition___default__\"\n", | ||
| "ic = 0\n", | ||
| "\n", | ||
| "# Load condition-specific data\n", | ||
| "ts_dyn = jax_problem._ts_dyn[ic, :]\n", | ||
|
|
@@ -397,7 +403,7 @@ | |
| "nps = jax_problem._np_numeric[ic, :]\n", | ||
| "\n", | ||
| "# Load parameters for the specified condition\n", | ||
| "p = jax_problem.load_model_parameters(simulation_condition[0])\n", | ||
| "p = jax_problem.load_model_parameters(jax_problem._petab_problem.experiments[0], is_preeq=False)\n", | ||
| "\n", | ||
| "\n", | ||
| "# Define a function to compute the gradient with respect to dynamic timepoints\n", | ||
|
|
@@ -431,13 +437,17 @@ | |
| "cell_type": "markdown", | ||
| "id": "19ca88c8900584ce", | ||
| "metadata": {}, | ||
| "source": "## Model training" | ||
| "source": [ | ||
| "## Model training" | ||
| ] | ||
| }, | ||
| { | ||
| "cell_type": "markdown", | ||
| "id": "7f99c046d7d4e225", | ||
| "metadata": {}, | ||
| "source": "This setup makes it pretty straightforward to train models using [equinox](https://docs.kidger.site/equinox/) and [optax](https://optax.readthedocs.io/en/latest/) frameworks. Below we provide barebones implementation that runs training for 5 steps using Adam." | ||
| "source": [ | ||
| "This setup makes it pretty straightforward to train models using [equinox](https://docs.kidger.site/equinox/) and [optax](https://optax.readthedocs.io/en/latest/) frameworks. Below we provide barebones implementation that runs training for 5 steps using Adam." | ||
| ] | ||
| }, | ||
| { | ||
| "cell_type": "code", | ||
|
|
@@ -569,16 +579,20 @@ | |
| "from amici.sim.sundials.petab.v1 import simulate_petab\n", | ||
| "\n", | ||
| "# Import the PEtab problem as a standard AMICI model\n", | ||
| "amici_model = import_petab_problem(\n", | ||
| " petab_problem,\n", | ||
| " verbose=False,\n", | ||
| " jax=False, # load the amici model this time\n", | ||
| "pi = PetabImporter(\n", | ||
| " petab_problem=petab_problem,\n", | ||
| " module_name=model_name,\n", | ||
| " compile_=True,\n", | ||
| " jax=False,\n", | ||
| ")\n", | ||
| "\n", | ||
| "amici_model = pi.create_simulator(\n", | ||
| " force_import=True,\n", | ||
| ")\n", | ||
| "\n", | ||
| "# Configure the solver with appropriate tolerances\n", | ||
| "solver = amici_model.create_solver()\n", | ||
| "solver.set_absolute_tolerance(1e-8)\n", | ||
| "solver.set_relative_tolerance(1e-16)\n", | ||
| "amici_model.solver.set_absolute_tolerance(1e-8)\n", | ||
| "amici_model.solver.set_relative_tolerance(1e-16)\n", | ||
| "\n", | ||
| "# Prepare the parameters for the simulation\n", | ||
| "problem_parameters = dict(\n", | ||
|
|
@@ -594,86 +608,65 @@ | |
| "outputs": [], | ||
| "source": [ | ||
| "# Profile simulation only\n", | ||
| "solver.set_sensitivity_order(SensitivityOrder.none)" | ||
| "amici_model.solver.set_sensitivity_order(SensitivityOrder.none)" | ||
| ] | ||
| }, | ||
| { | ||
| "metadata": {}, | ||
| "cell_type": "code", | ||
| "outputs": [], | ||
| "execution_count": null, | ||
| "id": "42cbc67bc09b67dc", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "%%timeit\n", | ||
| "simulate_petab(\n", | ||
| " petab_problem,\n", | ||
| " amici_model=amici_model,\n", | ||
| " solver=solver,\n", | ||
| " problem_parameters=problem_parameters,\n", | ||
| " scaled_parameters=True,\n", | ||
| " scaled_gradients=True,\n", | ||
| ")" | ||
| ], | ||
| "id": "42cbc67bc09b67dc" | ||
| "amici_model.simulate(petab_problem.get_x_nominal_dict())" | ||
| ] | ||
| }, | ||
| { | ||
| "metadata": {}, | ||
| "cell_type": "code", | ||
| "outputs": [], | ||
| "execution_count": null, | ||
| "id": "4f1c06c5893a9c07", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "# Profile gradient computation using forward sensitivity analysis\n", | ||
| "solver.set_sensitivity_order(SensitivityOrder.first)\n", | ||
| "solver.set_sensitivity_method(SensitivityMethod.forward)" | ||
| ], | ||
| "id": "4f1c06c5893a9c07" | ||
| "amici_model.solver.set_sensitivity_order(SensitivityOrder.first)\n", | ||
| "amici_model.solver.set_sensitivity_method(SensitivityMethod.forward)" | ||
| ] | ||
| }, | ||
| { | ||
| "metadata": {}, | ||
| "cell_type": "code", | ||
| "outputs": [], | ||
| "execution_count": null, | ||
| "id": "7367a19bcea98597", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "%%timeit\n", | ||
| "simulate_petab(\n", | ||
| " petab_problem,\n", | ||
| " amici_model=amici_model,\n", | ||
| " solver=solver,\n", | ||
| " problem_parameters=problem_parameters,\n", | ||
| " scaled_parameters=True,\n", | ||
| " scaled_gradients=True,\n", | ||
| ")" | ||
| ], | ||
| "id": "7367a19bcea98597" | ||
| "amici_model.simulate(petab_problem.get_x_nominal_dict())" | ||
| ] | ||
| }, | ||
| { | ||
| "metadata": {}, | ||
| "cell_type": "code", | ||
| "outputs": [], | ||
| "execution_count": null, | ||
| "id": "a31e8eda806c2d7", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "# Profile gradient computation using adjoint sensitivity analysis\n", | ||
| "solver.set_sensitivity_order(SensitivityOrder.first)\n", | ||
| "solver.set_sensitivity_method(SensitivityMethod.adjoint)" | ||
| ], | ||
| "id": "a31e8eda806c2d7" | ||
| "amici_model.solver.set_sensitivity_order(SensitivityOrder.first)\n", | ||
| "amici_model.solver.set_sensitivity_method(SensitivityMethod.adjoint)" | ||
| ] | ||
| }, | ||
| { | ||
| "metadata": {}, | ||
| "cell_type": "code", | ||
| "outputs": [], | ||
| "execution_count": null, | ||
| "id": "3f2ab1acb3ba818f", | ||
| "metadata": {}, | ||
| "outputs": [], | ||
| "source": [ | ||
| "%%timeit\n", | ||
| "simulate_petab(\n", | ||
| " petab_problem,\n", | ||
| " amici_model=amici_model,\n", | ||
| " solver=solver,\n", | ||
| " problem_parameters=problem_parameters,\n", | ||
| " scaled_parameters=True,\n", | ||
| " scaled_gradients=True,\n", | ||
| ")" | ||
| ], | ||
| "id": "3f2ab1acb3ba818f" | ||
| "amici_model.simulate(petab_problem.get_x_nominal_dict())" | ||
|
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. When the notebook runs there is an error from this cell that the FIM was not computed: https://github.com/AMICI-dev/AMICI/actions/runs/21985309084/job/63517900881?pr=3115 @dweindl can you advise on that?
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. My fault. I hope #3125 fixes that. |
||
| ] | ||
| } | ||
| ], | ||
| "metadata": { | ||
|
|
@@ -691,7 +684,8 @@ | |
| "mimetype": "text/x-python", | ||
| "name": "python", | ||
| "nbconvert_exporter": "python", | ||
| "pygments_lexer": "ipython3" | ||
| "pygments_lexer": "ipython3", | ||
| "version": "3.12.3" | ||
| } | ||
| }, | ||
| "nbformat": 4, | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.