Skip to content

AdiBhushan10/Unsupervised-Machine-Learning

Repository files navigation

#########################################################################################
# Submission By: Aditya Bhushan
########################################################################################

This Project is based on Unsupervised Learning!

This repository contains the following python files:
a) Project - Dataset1.py
All 5 parts as per assignment instructions has been completed. There are multiple functions that computes the plots that I have used for Dataset 1. 
These are the functions:
#K_Means_graphs()
#EM_graphs()
#EM_vs_Kmeans()
#PCA_graphs()
#ICA_graphs()
#RP_graphs()
#FA_graphs()
#Dim_Red_Time_graphs()

#Show_Clusters(data, labels, 'KMeans','pca')
#Show_Clusters(data, labels,'EM','pca')
#Show_Clusters(data, labels, 'KMeans','ica')
#Show_Clusters(data, labels,'EM','ica')
#Show_Clusters(data, labels, 'KMeans','rp')
#Show_Clusters(data, labels,'EM','rp')

#KMeans_PCA_Score()
#EM_PCA_Score()
#KMeans_ICA_Score()
#EM_ICA_Score()
#KMeans_RP_Score()
#EM_RP_Score()
#KMeans_FA_Score()
#EM_FA_Score()

#NeuralNet_PCA()
#NeuralNet_ICA()
#NeuralNet_RP()
#NeuralNet_LDA()
#NeuralNet_FA()
#NeuralNet_Basic()
#NeuralNet_Kmeans()
#NeuralNet_EM_GMM()
#NeuralNet_Clustering()

b) Project - Dataset2.py
All 3 parts as per assignment instructions has been completed (Part 4 & 5 not required for this dataset). There are multiple functions that computes the plots that I have used for Dataset 2. 
These are the functions:
#K_Means_graphs()
#EM_graphs()
#EM_vs_Kmeans()
#PCA_graphs()
#ICA_graphs()
#RP_graphs()
#FA_graphs()
#Dim_Red_Time_graphs()

#KMeans_PCA_Score()
#EM_PCA_Score()
#KMeans_ICA_Score()
#EM_ICA_Score()
#KMeans_RP_Score()
#EM_RP_Score()
#KMeans_FA_Score()
#EM_FA_Score()

#Show_Clusters(data, labels, 'KMeans','pca')
#Show_Clusters(data, labels,'EM','pca')
#Show_Clusters(data, labels, 'KMeans','ica')
#Show_Clusters(data, labels,'EM','ica')
#Show_Clusters(data, labels, 'KMeans','rp')
#Show_Clusters(data, labels,'EM','rp')


About

Explore multiple clustering & dimensionality reduction techniques to solve real-world problems

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages