if __name__ == '__main__': # If file is not imported, this will be executed
main()$ python3 $ pip3 install <package-name> $ python3 <filename>.py $ time python3 <filename>.py import <filename>.py- Input
input("Input: ")- Python always take inputs as a string. If you want to take a decimal number (Int, Float,etc). Use typecasting
int(input("Input: "))- Output Python automatically points the cursor to a new line. We need not specify explicitly.
print("Output")In python, we need not specify the datatype of a variable. The interpreter interprets the value and assigns a suitabe datatype for that.
number = 0
org = "GitHub"In python, we do not write a block of code in a pair of paranthesis.
We write it after : followed by an indentation in the next line.
The conditional statements include if, if-elif-else, if-else, nested if and so on... (elif = else if)
x,y = 0,1
if x < y:
print("x is less than y)
elif x > y:
print("x is not less than y")
else:
print("x is equal to y")Note that the colon (:) following is required.
Similarly, the nested if also works.
As other programming languages, we have
for loop
for i in range(5):
print(i)for loop iterating over characters in string or values of list
for char in <string>:
print(char, end="") # end argument for not changing to next line by default
or
for item in <list>:
print(item) # print each elements of the list on different line
The `range` function starts off with 0 till the number(excluded). The `range` function can be initialised at any number i = 1, 2, etc.. Just change the range(i,n) till 1 less then `n`. You caneven change the iteration value by specifying the key (k), by default k is 1 if not specified. For example.. range(i,n,k) the range will increment i value by adding k to the i.
+ `while loop`
```python
i=0
while(i < 10):
print("{} is less than 10".format(i))
i += 1.format() is a type of printing.
# These are all inplace operations returns a None value
<list_name> = [] or list() # Create an empty list
<list>.append(<ele>) # Add an element to the end of the list
<list>.sort() # Sorts the same given list
sorted(<list>) # If don't want to sort the original list.
<list>.pop([<ele>]) # Removes the last element if no argument else removes the element at the index given
<list>.clear() # Makes it an empty list
<list>.insert(<index>, <ele>) # Adds the element at the index
<list>.extend(<iterator>)
<list>.reverse() # Reverse a given list
<list>.clear() # Clears all the elements present in list# These are not inplace operations and has a return value
<list>.copy() # Makes a shallow copy of the list
<list>.index(<ele>) # Returns the index of the given element
<list>.count(<ele>) # Returns the number of occurrences of the elementkey-value pairs.
<dict_name> = {} or dict() # Creating an empty dictionary
<dict> = {'Google':100, 'Facebook':80, 'Apple':90}
# key ca be a decimal number and values can be anything from a string, decimal number to list or a dictionary itself.
<dict>['Amazon'] = 85 # Adding a key along with the value
# Accessing the dictionary
for key in <dict>:
print("{key} -> {x}".format(key=key, x=<dict>[key]))
# Accessing both the key and value in the dictionary
for key, value in <dict>.items():
print("{} -> {}".format(key, value))
<dict>.keys() # Return a sequence of all the keys present in Dictionary / Print all the keys
<dict>.values() # Return a sequence of all the values present in Dictionary / Print all the values
len(<dict>) # Find the length of the dictionary
<dict>.pop(<key>) # Removes the item with the specified key name
del <dict>[<key>] # delete the item
<dict>.copy() # Make a copy of a dictionary
<dict>.clear() # Clears all the keys and values stored in dictionary
<dict>.update(<other_dict>) # Combine 2 dictionaries. If same key is present in both the dictionaries then the value of the first dictionary will be replaced # by other_dictionary value coresponding to the key.A dictionary can also contain many dictionaries, this is called nested dictionaries.
$ sudo pip3 install pandas # Installing pandas module in Ubuntuimport pandas as pd
<dataframe>.head([<n>]) # Display the first n rows of the Dataframe, default value is 5 rows
<dataframe>.tail([<n>]) # Display the last n rows of the Dataframe, default value is 5 rows
<dataframe>.info() # Gives some information like, row and column datatypes, non-null count, and memory usage
<dataframe>.describe() # Provides some descriptive statistics about the numerical rows in the dataframe$ sudo pip3 install nltk # Installing nltk module in Ubuntuimport nltk
# Before trying any function download the word list
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')