Agentic RAG System using LangChain, LangGraph, and Gemini API
- Python 3.11
- Google Gemini API Key
git clone https://github.com/PriyamPritamPanda/Observe.git
cd ObserveDo not forget to be on the right branch
python3.11 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activatepip install -r observe_ai/requirements.txtCreate a file named .env in the root directory and add your Gemini API key:
GEMINI_API_KEY=your_google_gemini_api_key_here
Observe/
├── .github/
├── archived/
├── observe_ai/
│ ├── requirements.txt
│ ├── src/
│ │ ├── main.py
│ │ └── ...
├── venv/
├── .env
├── .gitattributes
├── .gitignore
├── README.md
Change directory to observe_ai and run the main module:
cd observe_ai
python -m src.main [ARGS]--init-vectors: Initialize vector store from transcripts--interactive: Run in interactive mode (CLI)--query "your question": Process a single query
Initialize vector store:
python -m src.main --init-vectorsRun in interactive mode:
python -m src.main --interactiveProcess a single query:
python -m src.main --query "What was the outcome of transaction 123?"- Ensure your
.envfile contains a validGEMINI_API_KEYbefore running. - Python 3.11 is required for compatibility.
- All commands should be run from the
observe_aidirectory. - src/memory and src/causal are redundant for now. Needs work.