Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions SLAM/EKFSLAM/ekf_slam.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,9 +50,9 @@ def ekf_slam(xEst, PEst, u, z):
lm = get_LM_Pos_from_state(xEst, minid)
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)

K = PEst.dot(H.T).dot(np.linalg.inv(S))
xEst = xEst + K.dot(y)
PEst = (np.eye(len(xEst)) - K.dot(H)).dot(PEst)
K = (PEst @ H.T) @ np.linalg.inv(S)
xEst = xEst + (K @ y)
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst

xEst[2] = pi_2_pi(xEst[2])

Expand Down Expand Up @@ -104,7 +104,7 @@ def motion_model(x, u):
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])

x = F.dot(x) + B .dot(u)
x = (F @ x) + (B @ u)
return x


Expand Down Expand Up @@ -157,7 +157,7 @@ def search_correspond_LM_ID(xAug, PAug, zi):
for i in range(nLM):
lm = get_LM_Pos_from_state(xAug, i)
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
mdist.append(y.T.dot(np.linalg.inv(S)).dot(y))
mdist.append(y.T @ np.linalg.inv(S) @ y)

mdist.append(M_DIST_TH) # new landmark

Expand All @@ -168,14 +168,14 @@ def search_correspond_LM_ID(xAug, PAug, zi):

def calc_innovation(lm, xEst, PEst, z, LMid):
delta = lm - xEst[0:2]
q = (delta.T.dot(delta))[0, 0]
q = (delta.T @ delta)[0, 0]
#zangle = math.atan2(delta[1], delta[0]) - xEst[2]
zangle = math.atan2(delta[1,0], delta[0,0]) - xEst[2]
zp = np.array([[math.sqrt(q), pi_2_pi(zangle)]])
y = (z - zp).T
y[1] = pi_2_pi(y[1])
H = jacobH(q, delta, xEst, LMid + 1)
S = H.dot(PEst).dot(H.T) + Cx[0:2, 0:2]
S = H @ PEst @ H.T + Cx[0:2, 0:2]

return y, S, H

Expand All @@ -193,7 +193,7 @@ def jacobH(q, delta, x, i):

F = np.vstack((F1, F2))

H = G.dot(F)
H = G @ F

return H

Expand Down
64 changes: 32 additions & 32 deletions SLAM/GraphBasedSLAM/graph_based_slam.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def cal_observation_sigma(d):

def calc_rotational_matrix(angle):

Rt = np.matrix([[math.cos(angle), -math.sin(angle), 0],
Rt = np.array([[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1.0]])
return Rt
Expand Down Expand Up @@ -92,7 +92,7 @@ def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
sig1 = cal_observation_sigma(d1)
sig2 = cal_observation_sigma(d2)

edge.omega = np.linalg.inv(Rt1 * sig1 * Rt1.T + Rt2 * sig2 * Rt2.T)
edge.omega = np.linalg.inv(Rt1 @ sig1 @ Rt1.T + Rt2 @ sig2 @ Rt2.T)

edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
Expand Down Expand Up @@ -127,20 +127,20 @@ def calc_edges(xlist, zlist):
angle1, phi1, d2, angle2, phi2, t1, t2)

edges.append(edge)
cost += (edge.e.T * edge.omega * edge.e)[0, 0]
cost += (edge.e.T @ (edge.omega) @ edge.e)[0, 0]

print("cost:", cost, ",nedge:", len(edges))
return edges


def calc_jacobian(edge):
t1 = edge.yaw1 + edge.angle1
A = np.matrix([[-1.0, 0, edge.d1 * math.sin(t1)],
A = np.array([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, -1.0]])

t2 = edge.yaw2 + edge.angle2
B = np.matrix([[1.0, 0, -edge.d2 * math.sin(t2)],
B = np.array([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 1.0]])

Expand All @@ -154,13 +154,13 @@ def fill_H_and_b(H, b, edge):
id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE

H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T * edge.omega * A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T * edge.omega * B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T * edge.omega * A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T * edge.omega * B
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T @ edge.omega @ A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T @ edge.omega @ B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T @ edge.omega @ A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T @ edge.omega @ B

b[id1:id1 + STATE_SIZE, 0] += (A.T * edge.omega * edge.e)
b[id2:id2 + STATE_SIZE, 0] += (B.T * edge.omega * edge.e)
b[id1:id1 + STATE_SIZE] += (A.T @ edge.omega @ edge.e)
b[id2:id2 + STATE_SIZE] += (B.T @ edge.omega @ edge.e)

return H, b

Expand All @@ -178,21 +178,21 @@ def graph_based_slam(x_init, hz):
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, zlist)

H = np.matrix(np.zeros((n, n)))
b = np.matrix(np.zeros((n, 1)))
H = np.zeros((n, n))
b = np.zeros((n, 1))

for edge in edges:
H, b = fill_H_and_b(H, b, edge)

# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)

dx = - np.linalg.inv(H).dot(b)
dx = - np.linalg.inv(H) @ b

for i in range(nt):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
x_opt[0:3, i] += dx[i * 3:i * 3 + 3,0]

diff = dx.T.dot(dx)
diff = dx.T @ dx
print("iteration: %d, diff: %f" % (itr + 1, diff))
if diff < 1.0e-5:
break
Expand All @@ -203,7 +203,7 @@ def graph_based_slam(x_init, hz):
def calc_input():
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.matrix([v, yawrate]).T
u = np.array([[v, yawrate]]).T
return u


Expand All @@ -212,7 +212,7 @@ def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)

# add noise to gps x-y
z = np.matrix(np.zeros((0, 4)))
z = np.zeros((0, 4))

for i in range(len(RFID[:, 0])):

Expand All @@ -224,13 +224,13 @@ def observation(xTrue, xd, u, RFID):
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.matrix([dn, anglen, phi, i])
zi = np.array([dn, anglen, phi, i])
z = np.vstack((z, zi))

# add noise to input
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1]
ud = np.matrix([ud1, ud2]).T
ud = np.array([[ud1, ud2]]).T

xd = motion_model(xd, ud)

Expand All @@ -239,15 +239,15 @@ def observation(xTrue, xd, u, RFID):

def motion_model(x, u):

F = np.matrix([[1.0, 0, 0],
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])

B = np.matrix([[DT * math.cos(x[2, 0]), 0],
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])

x = F * x + B * u
x = F @ x + B @ u

return x

Expand All @@ -270,8 +270,8 @@ def main():
])

# State Vector [x y yaw v]'
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
xTrue = np.zeros((STATE_SIZE, 1))
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning

# history
hxTrue = xTrue
Expand Down Expand Up @@ -299,17 +299,17 @@ def main():

plt.plot(RFID[:, 0], RFID[:, 1], "*k")

plt.plot(np.array(hxTrue[0, :]).flatten(),
np.array(hxTrue[1, :]).flatten(), "-b")
plt.plot(np.array(hxDR[0, :]).flatten(),
np.array(hxDR[1, :]).flatten(), "-k")
plt.plot(np.array(x_opt[0, :]).flatten(),
np.array(x_opt[1, :]).flatten(), "-r")
plt.plot(hxTrue[0, :].flatten(),
hxTrue[1, :].flatten(), "-b")
plt.plot(hxDR[0, :].flatten(),
hxDR[1, :].flatten(), "-k")
plt.plot(x_opt[0, :].flatten(),
x_opt[1, :].flatten(), "-r")
plt.axis("equal")
plt.grid(True)
plt.title("Time" + str(time)[0:5])
plt.pause(1.0)


if __name__ == '__main__':
main()
main()
18 changes: 8 additions & 10 deletions SLAM/iterative_closest_point/iterative_closest_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def ICP_matching(ppoints, cpoints):
Rt, Tt = SVD_motion_estimation(ppoints[:, inds], cpoints)

# update current points
cpoints = (Rt.dot(cpoints)) + Tt[:,np.newaxis]
cpoints = (Rt @ cpoints) + Tt[:,np.newaxis]

H = update_homogenerous_matrix(H, Rt, Tt)

Expand Down Expand Up @@ -111,18 +111,17 @@ def nearest_neighbor_assosiation(ppoints, cpoints):

def SVD_motion_estimation(ppoints, cpoints):

pm = np.asarray(np.mean(ppoints, axis=1))
cm = np.asarray(np.mean(cpoints, axis=1))
print(cm)
pm = np.mean(ppoints, axis=1)
cm = np.mean(cpoints, axis=1)

pshift = np.array(ppoints - pm[:,np.newaxis])
cshift = np.array(cpoints - cm[:,np.newaxis])
pshift = ppoints - pm[:,np.newaxis]
cshift = cpoints - cm[:,np.newaxis]

W = cshift.dot(pshift.T)
W = cshift @ pshift.T
u, s, vh = np.linalg.svd(W)

R = (u.dot(vh)).T
t = pm - R.dot(cm)
R = (u @ vh).T
t = pm - (R @ cm)

return R, t

Expand Down Expand Up @@ -150,7 +149,6 @@ def main():
cy = [math.sin(motion[2]) * x + math.cos(motion[2]) * y + motion[1]
for (x, y) in zip(px, py)]
cpoints = np.vstack((cx, cy))
print(cpoints)

R, T = ICP_matching(ppoints, cpoints)

Expand Down