Skip to content

BishnuKr25/Own-AI-Engine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sovereign AI Application Suite - Complete Documentation

Table of Contents

  1. Executive Overview
  2. System Architecture
  3. Installation Guide
  4. Configuration Guide
  5. User Guide
  6. Administrator Guide
  7. API Documentation
  8. Development Guide
  9. Deployment Guide
  10. Model Management
  11. Security Guide
  12. Performance Tuning
  13. Troubleshooting
  14. Maintenance & Monitoring
  15. FAQ
  16. Appendices

1. Executive Overview

1.1 Introduction

The Sovereign AI Application Suite is an enterprise-grade, fully self-hosted artificial intelligence platform that provides state-of-the-art AI capabilities while maintaining complete data sovereignty and privacy. Built on a foundation of open-source models and technologies, it delivers performance comparable to leading commercial AI services without any external dependencies.

1.2 Key Features

Core Capabilities

  • Council of Experts Architecture: Multiple specialized AI models working in concert
  • Gemma 3 Integration: Google's latest efficient models for ultra-fast responses
  • Multimodal Processing: Support for text, images, audio, and documents
  • RAG System: Retrieval-Augmented Generation with private knowledge bases
  • Advanced Coding Assistant: Professional-grade code generation and debugging

Enterprise Features

  • 100% Self-Hosted: Complete control over infrastructure and data
  • No External APIs: All processing happens on-premises
  • Role-Based Access Control: Granular permission management
  • Audit Logging: Complete activity tracking for compliance
  • High Availability: Built-in redundancy and failover capabilities

Technical Highlights

  • Model Quantization: 4-bit and 8-bit precision for efficient GPU usage
  • Smart Caching: Intelligent response caching for improved performance
  • Auto-Scaling: Dynamic resource allocation based on demand
  • API-First Design: RESTful API for easy integration
  • Monitoring & Analytics: Comprehensive usage and performance metrics

1.3 Use Cases

Use Case Description Key Models Used
Code Development Generate, debug, and optimize code across multiple languages Codestral, CodeLlama, DeepSeek Coder
Data Analysis Analyze complex datasets and generate insights Mixtral, Gemma 3, Llama 3
Content Creation Write documentation, articles, and creative content Llama 3, Gemma 3, Mixtral
Customer Support Automated response generation and ticket classification Gemma 3, Mistral
Research Assistant Literature review, summarization, and synthesis Llama 3, Mixtral, Nemotron
Data Generation Create test data, schemas, and configurations Mixtral, Gemma 3

1.4 System Requirements

Minimum Requirements

  • CPU: 16 cores (AMD Ryzen 9 or Intel i9)
  • RAM: 64GB DDR4
  • GPU: NVIDIA RTX 4090 24GB or A100 40GB
  • Storage: 2TB NVMe SSD
  • OS: Ubuntu 22.04 LTS
  • Network: 1Gbps connection

Recommended Production Setup

  • CPU: 64+ cores (AMD EPYC or Intel Xeon)
  • RAM: 256GB DDR4 ECC
  • GPU: 4x NVIDIA A100 80GB or 2x H100 80GB
  • Storage: 8TB NVMe SSD RAID 10
  • OS: Ubuntu 22.04 LTS Server
  • Network: 10Gbps connection

2. System Architecture

2.1 High-Level Architecture

The Sovereign AI Suite follows a three-tier architecture pattern:

┌─────────────────────────────────────────────────────────┐
│                   Presentation Tier                       │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐              │
│  │Streamlit │  │  Web UI  │  │  Mobile  │              │
│  │   App    │  │ (Future) │  │ (Future) │              │
│  └──────────┘  └──────────┘  └──────────┘              │
└─────────────────────────────────────────────────────────┘
                            │
┌─────────────────────────────────────────────────────────┐
│                    Application Tier                       │
│  ┌──────────────────────────────────────────────────┐   │
│  │              FastAPI Backend Core                 │   │
│  │  ┌──────────┐  ┌──────────┐  ┌──────────┐      │   │
│  │  │  Router  │  │ Council  │  │   RAG    │      │   │
│  │  │  Engine  │  │    of    │  │  System  │      │   │
│  │  │          │  │  Experts │  │          │      │   │
│  │  └──────────┘  └──────────┘  └──────────┘      │   │
│  └──────────────────────────────────────────────────┘   │
│  ┌──────────────────────────────────────────────────┐   │
│  │           Flask Admin Portal                      │   │
│  └──────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────┘
                            │
┌─────────────────────────────────────────────────────────┐
│                      Data Tier                           │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐              │
│  │ MongoDB  │  │ChromaDB  │  │  Redis   │              │
│  │          │  │ Vectors  │  │  Cache   │              │
│  └──────────┘  └──────────┘  └──────────┘              │
└─────────────────────────────────────────────────────────┘

2.2 Component Details

2.2.1 AI Engine Core (FastAPI)

The heart of the system, responsible for:

  • Request routing and orchestration
  • Model loading and management
  • Response synthesis
  • API endpoint exposure

Key Modules:

  • model_loader.py: Dynamic model loading with quantization
  • council_of_experts.py: Multi-model orchestration
  • task_router.py: Intelligent query routing
  • main.py: FastAPI application and endpoints

2.2.2 Council of Experts

The unique multi-model architecture that enables superior performance:

Council Process Flow:
1. Query AnalysisDetermine complexity and type
2. Expert SelectionChoose optimal models
3. Parallel/Sequential ProcessingExecute based on resources
4. Response SynthesisCombine and refine outputs
5. Quality ValidationEnsure response meets standards

2.2.3 Model Registry

Centralized model configuration and management:

Model Purpose Memory Speed Quality
Gemma 3 2B Ultra-fast responses 3GB 10/10 7/10
Gemma 3 9B Balanced performance 6GB 9/10 8/10
Gemma 3 27B High-quality general 14GB 7/10 9/10
Llama 3.1 70B Complex reasoning 35GB 6/10 9/10
Codestral 22B Code generation 12GB 8/10 9/10
CodeLlama 70B Complex algorithms 35GB 6/10 9/10
Mixtral 8x22B Multi-domain expert 45GB 5/10 9/10

2.3 Data Flow

graph LR
    A[User Request] --> B[API Gateway]
    B --> C{Authentication}
    C -->|Valid| D[Task Router]
    C -->|Invalid| E[Error Response]
    D --> F[Query Classifier]
    F --> G[Model Selector]
    G --> H[Council of Experts]
    H --> I[Response Synthesis]
    I --> J[Quality Check]
    J --> K[Cache Response]
    K --> L[Return to User]
Loading

2.4 Security Architecture

Multiple layers of security ensure data protection:

  1. Network Security

    • SSL/TLS encryption
    • Firewall rules
    • Rate limiting
  2. Application Security

    • API key authentication
    • JWT tokens for sessions
    • Input validation and sanitization
  3. Data Security

    • Encryption at rest
    • Encrypted backups
    • Audit logging

3. Installation Guide

3.1 Prerequisites

System Preparation

# Update system packages
sudo apt update && sudo apt upgrade -y

# Install essential tools
sudo apt install -y \
    build-essential \
    git \
    curl \
    wget \
    vim \
    htop \
    software-properties-common

Python Installation

# Add Python 3.10 repository
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt update

# Install Python 3.10
sudo apt install -y python3.10 python3.10-venv python3.10-dev

# Set as default
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1

3.2 NVIDIA Setup

Driver Installation

# Add NVIDIA repository
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb

# Install CUDA and drivers
sudo apt update
sudo apt install -y cuda-12-3 nvidia-driver-545

# Verify installation
nvidia-smi

CUDA Configuration

# Add to .bashrc
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

# Test CUDA
nvcc --version

3.3 MongoDB Installation

# Import MongoDB public key
curl -fsSL https://pgp.mongodb.com/server-7.0.asc | \
   sudo gpg -o /usr/share/keyrings/mongodb-server-7.0.gpg --dearmor

# Add repository
echo "deb [ arch=amd64,arm64 signed-by=/usr/share/keyrings/mongodb-server-7.0.gpg ] \
  https://repo.mongodb.org/apt/ubuntu jammy/mongodb-org/7.0 multiverse" | \
  sudo tee /etc/apt/sources.list.d/mongodb-org-7.0.list

# Install MongoDB
sudo apt update
sudo apt install -y mongodb-org

# Start service
sudo systemctl start mongod
sudo systemctl enable mongod

3.4 Application Installation

Step 1: Clone Repository

# Create application directory
sudo mkdir -p /opt/sovereign-ai-suite
sudo chown $USER:$USER /opt/sovereign-ai-suite

# Clone repository
git clone https://github.com/your-org/sovereign-ai-suite.git /opt/sovereign-ai-suite
cd /opt/sovereign-ai-suite

Step 2: Python Environment

# Create virtual environment
python3.10 -m venv venv
source venv/bin/activate

# Upgrade pip
pip install --upgrade pip setuptools wheel

# Install requirements
pip install -r setup/requirements.txt

Step 3: Download Models

# Download all models (2-4 hours)
python scripts/download_models.py

# Or download priority models only
python scripts/download_models.py --priority-only

Step 4: Configuration

# Copy environment template
cp config/.env.example .env

# Edit configuration
vim .env

Key configuration variables:

# Application
APP_NAME="Sovereign AI Suite"
DEBUG=false

# API
API_HOST=0.0.0.0
API_PORT=8000

# Security
SECRET_KEY=<generate-strong-key>

# MongoDB
MONGODB_URL=mongodb://localhost:27017
DATABASE_NAME=sovereign_ai

# Models
MAX_CACHED_MODELS=3
ENABLE_GEMMA3_FAST_MODE=true

Step 5: Initialize Database

# Run database initialization
python scripts/init_db.py

# Create admin user
python scripts/create_admin.py

3.5 Service Configuration

Systemd Service

# Copy service file
sudo cp config/sovereign-ai.service /etc/systemd/system/

# Reload systemd
sudo systemctl daemon-reload

# Enable service
sudo systemctl enable sovereign-ai

# Start service
sudo systemctl start sovereign-ai

Nginx Configuration

# Install Nginx
sudo apt install -y nginx

# Copy configuration
sudo cp config/nginx.conf /etc/nginx/sites-available/sovereign-ai
sudo ln -s /etc/nginx/sites-available/sovereign-ai /etc/nginx/sites-enabled/

# Test configuration
sudo nginx -t

# Restart Nginx
sudo systemctl restart nginx

4. Configuration Guide

4.1 Environment Variables

Complete list of environment variables:

Variable Description Default Required
APP_NAME Application name Sovereign AI Suite No
DEBUG Debug mode false No
API_HOST API bind address 0.0.0.0 No
API_PORT API port 8000 No
API_WORKERS Number of API workers 1 No
SECRET_KEY Secret key for encryption None Yes
MONGODB_URL MongoDB connection string mongodb://localhost:27017 Yes
DATABASE_NAME Database name sovereign_ai No
MAX_CACHED_MODELS Maximum cached models 3 No
DEFAULT_TEMPERATURE Default model temperature 0.7 No
DEFAULT_MAX_TOKENS Default max tokens 2048 No
ENABLE_CACHE Enable response caching true No
CACHE_TTL Cache TTL in seconds 3600 No

4.2 Model Configuration

models_config.yaml

# Model-specific configurations
models:
  gemma3:
    2b:
      model_id: "google/gemma-2b-it"
      optimal_batch_size: 8
      max_sequence_length: 8192
      quantization: "none"
    9b:
      model_id: "google/gemma-7b-it"
      optimal_batch_size: 4
      max_sequence_length: 8192
      quantization: "4bit"
    27b:
      model_id: "google/gemma-7b-it"
      optimal_batch_size: 2
      max_sequence_length: 8192
      quantization: "4bit"

# Optimization settings
optimization:
  enable_flash_attention: true
  enable_quantization: true
  default_quantization: "4bit"
  gradient_checkpointing: false
  
# Performance settings
performance:
  max_concurrent_models: 3
  model_timeout_seconds: 300
  enable_caching: true
  cache_ttl_seconds: 3600
  
# Task routing
routing:
  complexity_thresholds:
    simple: 0.3
    moderate: 0.6
    complex: 0.8
  expert_counts:
    simple: 1
    moderate: 2
    complex: 3
    very_complex: 5

4.3 Security Configuration

API Key Management

# Generate secure API key
import secrets
api_key = f"sk-{secrets.token_hex(32)}"

SSL/TLS Configuration

# Generate self-signed certificate (for testing)
openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365

# Or use Let's Encrypt (production)
sudo apt install certbot python3-certbot-nginx
sudo certbot --nginx -d your-domain.com

4.4 Database Configuration

MongoDB Optimization

// /etc/mongod.conf
storage:
  dbPath: /var/lib/mongodb
  journal:
    enabled: true
  engine: wiredTiger
  wiredTiger:
    engineConfig:
      cacheSizeGB: 8
      journalCompressor: snappy
    collectionConfig:
      blockCompressor: snappy

net:
  port: 27017
  bindIp: 127.0.0.1

security:
  authorization: enabled

replication:
  replSetName: rs0

5. User Guide

5.1 Getting Started

Accessing the Application

  1. Open your browser and navigate to: http://your-server:8501
  2. Enter your API key in the authentication section
  3. Click "Connect" to authenticate

First Query

  1. Type your question in the chat input
  2. Press Enter or click Send
  3. Wait for the AI response
  4. View response details by expanding the metadata section

5.2 Features Overview

5.2.1 Chat Interface

The main interface for interacting with the AI:

  • Query Input: Natural language input for questions
  • Context Field: Additional context for better responses
  • Response Display: Formatted AI responses with syntax highlighting
  • Metadata View: Processing details and confidence scores

5.2.2 File Processing

Upload and analyze various file types:

Supported Formats:

  • Documents: PDF, DOCX, TXT, CSV, XLSX
  • Images: PNG, JPG, JPEG, GIF
  • Audio: MP3, WAV, M4A

Processing Options:

  • Analyze: Extract insights from content
  • Summarize: Create concise summaries
  • Extract: Pull out specific information
  • Add to Knowledge Base: Store for RAG retrieval

5.2.3 Model Selection

Choose between different processing modes:

Mode Description Response Time Use Case
Fast Mode Uses Gemma 3 models < 2 seconds Quick questions, simple tasks
Standard Mode 2-3 expert models 3-5 seconds Most queries
Deep Mode 4-5 expert models 5-10 seconds Complex analysis

5.3 Advanced Features

5.3.1 Code Generation

Generate code with specific requirements:

# Example prompt
"Create a Python FastAPI endpoint for user authentication with JWT tokens, 
including input validation and error handling"

Best Practices:

  • Be specific about requirements
  • Mention language and framework
  • Include error handling needs
  • Specify security requirements

5.3.2 Data Generation

Create structured data:

# Example prompt
"Generate a CSV with 100 rows of sample e-commerce data including:
- order_id (unique)
- customer_name
- product_name
- quantity
- price
- order_date (last 30 days)
- status (pending/shipped/delivered)"

5.3.3 Document Analysis

Analyze uploaded documents:

  1. Upload document using file uploader
  2. Select "Analyze" as process type
  3. Add specific questions (optional)
  4. Click "Process File"

5.4 Tips for Better Results

Query Optimization

Do Don't
Be specific and detailed Use vague language
Provide context when needed Assume prior knowledge
Break complex tasks into steps Ask multiple unrelated questions
Specify output format Leave format ambiguous

Context Usage

Effective context improves response quality:

# Good context example
Context: "I'm building a React application with TypeScript. 
         We use Material-UI for components and Redux for state management."
Query: "How do I implement infinite scrolling for a product list?"

# Poor context example
Context: "React app"
Query: "How to do scrolling?"

6. Administrator Guide

6.1 Admin Portal Access

Initial Login

  1. Navigate to: http://your-server:5000
  2. Default credentials:
    • Username: admin
    • Password: changeme123
  3. Important: Change default password immediately

Dashboard Overview

The admin dashboard provides:

  • User statistics
  • API key management
  • System metrics
  • Recent activity logs
  • Quick actions

6.2 User Management

Creating Users

# Via Admin Portal
1. Click "Create User"
2. Fill in required fields:
   - Username (unique)
   - Email
   - Organization (optional)
   - Role (user/developer/admin)
3. Click "Create"
4. Copy generated API key
5. Share securely with user

User Roles

Role Permissions Use Case
User Basic API access Standard users
Developer Extended API access, higher limits Development teams
Admin Full access, user management System administrators

Managing API Keys

# Regenerate API key
1. Navigate to Users page
2. Find user in list
3. Click "Regenerate Key"
4. Confirm action
5. Share new key with user

# Revoke API key
1. Navigate to Users page
2. Find user in list
3. Click "Revoke Key"
4. Key is immediately invalidated

6.3 System Administration

6.3.1 Service Management

# Check service status
sudo systemctl status sovereign-ai

# Restart services
sudo systemctl restart sovereign-ai

# View logs
sudo journalctl -u sovereign-ai -f

# Individual service control
sudo supervisorctl status
sudo supervisorctl restart backend
sudo supervisorctl restart frontend
sudo supervisorctl restart admin

6.3.2 Database Management

# Backup MongoDB
mongodump --db sovereign_ai --out /backup/$(date +%Y%m%d)

# Restore MongoDB
mongorestore --db sovereign_ai /backup/20240101

# Database maintenance
mongo sovereign_ai --eval "db.repairDatabase()"

# Clear old logs (older than 30 days)
mongo sovereign_ai --eval "
  db.query_logs.deleteMany({
    timestamp: { \$lt: new Date(Date.now() - 30*24*60*60*1000) }
  })
"

6.3.3 Model Management

# List downloaded models
ls -la /opt/sovereign-ai-suite/models/

# Update specific model
python scripts/update_model.py --model gemma3-27b

# Clear model cache
python scripts/clear_cache.py --type models

# Verify model integrity
python scripts/verify_models.py

6.4 Monitoring

6.4.1 System Metrics

Monitor key metrics using built-in tools:

# GPU utilization
nvidia-smi -l 1

# Memory usage
free -h

# Disk usage
df -h

# Process monitoring
htop

6.4.2 Application Metrics

Access metrics via API:

# Get system health
curl -X GET http://localhost:8000/health

# Get usage analytics
curl -X GET http://localhost:8000/api/v1/analytics \
  -H "X-API-Key: your-admin-key"

6.4.3 Log Analysis

Important log locations:

# Application logs
/opt/sovereign-ai-suite/logs/backend.log
/opt/sovereign-ai-suite/logs/frontend.log
/opt/sovereign-ai-suite/logs/admin.log

# System logs
/var/log/nginx/access.log
/var/log/nginx/error.log
/var/log/mongodb/mongod.log

# Analyze logs
grep ERROR /opt/sovereign-ai-suite/logs/backend.log
tail -f /opt/sovereign-ai-suite/logs/backend.log

6.5 Backup and Recovery

6.5.1 Backup Strategy

#!/bin/bash
# backup.sh - Daily backup script

BACKUP_DIR="/backup/sovereign-ai/$(date +%Y%m%d)"
mkdir -p $BACKUP_DIR

# Backup MongoDB
mongodump --db sovereign_ai --out $BACKUP_DIR/mongodb

# Backup configuration
cp -r /opt/sovereign-ai-suite/config $BACKUP_DIR/

# Backup uploaded files
cp -r /opt/sovereign-ai-suite/data/uploads $BACKUP_DIR/

# Compress backup
tar -czf $BACKUP_DIR.tar.gz $BACKUP_DIR
rm -rf $BACKUP_DIR

# Keep only last 30 days
find /backup/sovereign-ai -name "*.tar.gz" -mtime +30 -delete

6.5.2 Recovery Procedures

# Full recovery
1. Stop all services
   sudo systemctl stop sovereign-ai

2. Restore MongoDB
   mongorestore --db sovereign_ai /backup/mongodb

3. Restore configuration
   cp -r /backup/config/* /opt/sovereign-ai-suite/config/

4. Restore uploads
   cp -r /backup/uploads/* /opt/sovereign-ai-suite/data/uploads/

5. Start services
   sudo systemctl start sovereign-ai

7. API Documentation

7.1 API Overview

Base URL: http://your-server:8000/api/v1

Authentication: All endpoints require API key in header:

X-API-Key: sk-your-api-key

7.2 Endpoints

7.2.1 Query Processing

POST /api/v1/query

Process a query through the Council of Experts.

Request Body:

{
  "query": "string",
  "context": "string (optional)",
  "task_type": "general|coding|analysis|creative|data_generation",
  "num_experts": 3,
  "temperature": 0.7,
  "max_tokens": 2048,
  "use_rag": true,
  "fast_mode": false
}

Response:

{
  "query_id": "uuid",
  "success": true,
  "answer": "string",
  "task_type": "general",
  "experts_consulted": ["gemma3-27b", "llama3-70b"],
  "confidence_score": 0.85,
  "processing_time": 3.5,
  "tokens_used": 1250,
  "metadata": {},
  "timestamp": "2024-01-01T00:00:00Z"
}

Example:

curl -X POST http://localhost:8000/api/v1/query \
  -H "Content-Type: application/json" \
  -H "X-API-Key: sk-your-key" \
  -d '{
    "query": "Write a Python function to calculate fibonacci",
    "task_type": "coding",
    "num_experts": 2
  }'

7.2.2 File Upload

POST /api/v1/upload

Upload and process files.

Request:

  • Method: POST
  • Content-Type: multipart/form-data
  • Fields:
    • file: File data
    • query: Optional query about the file
    • process_type: analyze|extract|summarize|add_to_knowledge

Response:

{
  "success": true,
  "filename": "document.pdf",
  "file_type": ".pdf",
  "result": "string or object",
  "process_type": "analyze"
}

Example:

curl -X POST http://localhost:8000/api/v1/upload \
  -H "X-API-Key: sk-your-key" \
  -F "file=@document.pdf" \
  -F "query=Summarize this document" \
  -F "process_type=summarize"

7.2.3 Model Information

GET /api/v1/models

Get available models and their status.

Response:

{
  "models": [
    {
      "key": "gemma3-27b",
      "name": "Gemma 3 27B",
      "categories": ["general", "coding", "analysis"],
      "memory_gb": 14,
      "speed_rating": 7,
      "quality_rating": 9,
      "is_loaded": true,
      "specialties": ["comprehensive", "multilingual"]
    }
  ],
  "loaded": ["gemma3-27b", "codestral-22b"]
}

7.2.4 User Management

POST /api/v1/users

Create a new user (admin only).

Request Body:

{
  "username": "string",
  "email": "email@example.com",
  "role": "user|developer|admin",
  "organization": "string (optional)"
}

Response:

{
  "user": {
    "_id": "user_id",
    "username": "string",
    "email": "email@example.com",
    "role": "user",
    "created_at": "2024-01-01T00:00:00Z"
  },
  "api_key": "sk-generated-key"
}

7.2.5 Analytics

GET /api/v1/analytics

Get usage analytics (admin/developer only).

Query Parameters:

  • days: Number of days to analyze (default: 7)

Response:

{
  "period_days": 7,
  "analytics": [
    {
      "_id": "coding",
      "count": 150,
      "avg_time": 4.2,
      "avg_confidence": 0.87
    }
  ]
}

7.3 Error Handling

All errors follow standard HTTP status codes:

Status Code Description Example
200 Success Request processed successfully
400 Bad Request Invalid input parameters
401 Unauthorized Invalid or missing API key
403 Forbidden Insufficient permissions
404 Not Found Resource not found
429 Too Many Requests Rate limit exceeded
500 Internal Server Error Server error

Error Response Format:

{
  "error": {
    "code": "INVALID_INPUT",
    "message": "Detailed error message",
    "details": {}
  }
}

7.4 Rate Limiting

Default rate limits:

User Type Requests/Hour Concurrent Requests
User 100 2
Developer 500 5
Admin Unlimited Unlimited

7.5 Webhooks

Configure webhooks for event notifications:

{
  "url": "https://your-server.com/webhook",
  "events": ["query.completed", "user.created", "error.critical"],
  "secret": "webhook-secret"
}

8. Development Guide

8.1 Development Environment Setup

Local Development

# Clone repository
git clone https://github.com/your-org/sovereign-ai-suite.git
cd sovereign-ai-suite

# Create development branch
git checkout -b feature/your-feature

# Install development dependencies
pip install -r requirements-dev.txt

# Install pre-commit hooks
pre-commit install

Development Configuration

.env.development:

DEBUG=true
API_HOST=127.0.0.1
API_PORT=8000
MONGODB_URL=mongodb://localhost:27017
DATABASE_NAME=sovereign_ai_dev
MAX_CACHED_MODELS=1

8.2 Code Structure

Project Layout

sovereign-ai-suite/
├── backend/
│   ├── core/           # Core functionality
│   ├── services/       # Business logic
│   ├── api/           # API endpoints
│   ├── schemas/       # Data models
│   └── utils/         # Utilities
├── frontend/
│   └── streamlit_app.py
├── admin/
│   ├── app.py
│   └── templates/
├── tests/
│   ├── unit/
│   ├── integration/
│   └── e2e/
└── scripts/
    └── development/

8.3 Coding Standards

Python Style Guide

Follow PEP 8 with these additions:

# Good
from typing import Optional, List, Dict, Any
from dataclasses import dataclass

@dataclass
class ModelConfig:
    """Model configuration with clear documentation."""
    model_id: str
    max_tokens: int = 2048
    temperature: float = 0.7
    
    def validate(self) -> bool:
        """Validate configuration parameters."""
        return 0.0 <= self.temperature <= 2.0

# Bad
class model_config:
    def __init__(self, id, max_t=2048, temp=0.7):
        self.id = id
        self.max_t = max_t
        self.temp = temp

API Design

RESTful principles:

  • Use appropriate HTTP methods
  • Return consistent response formats
  • Include proper status codes
  • Version your API

8.4 Testing

8.4.1 Unit Testing

# tests/unit/test_model_loader.py
import pytest
from backend.core.model_loader import ModelLoader

@pytest.fixture
def model_loader():
    return ModelLoader(cache_dir="/tmp/test_models")

def test_load_model(model_loader):
    """Test model loading functionality."""
    model = model_loader.load_model("gemma3-2b")
    assert model is not None
    assert "gemma3-2b" in model_loader.loaded_models

def test_invalid_model(model_loader):
    """Test loading invalid model."""
    with pytest.raises(ValueError):
        model_loader.load_model("invalid-model")

8.4.2 Integration Testing

# tests/integration/test_api.py
import pytest
from fastapi.testclient import TestClient
from backend.main import app

client = TestClient(app)

def test_query_endpoint():
    """Test query processing endpoint."""
    response = client.post(
        "/api/v1/query",
        json={"query": "Hello, world!"},
        headers={"X-API-Key": "test-key"}
    )
    assert response.status_code == 200
    assert "answer" in response.json()

8.4.3 Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=backend --cov-report=html

# Run specific test file
pytest tests/unit/test_model_loader.py

# Run with verbose output
pytest -v

# Run only marked tests
pytest -m "not slow"

8.5 Adding New Models

Step 1: Update Model Registry

# backend/core/model_loader.py
ModelRegistry.MODELS["new-model"] = ModelProfile(
    model_id="org/model-name",
    name="New Model",
    categories=[TaskCategory.GENERAL],
    max_length=4096,
    optimal_temperature=0.7,
    memory_gb=20,
    speed_rating=7,
    quality_rating=8,
    specialties=["specific_task"],
    load_in_4bit=True
)

Step 2: Update Expert Groups

# backend/core/council_of_experts.py
EXPERT_STRATEGIES[TaskType.GENERAL]["primary"].append("new-model")

Step 3: Download Model

# scripts/download_models.py
LANGUAGE_MODELS.append(
    ("org/model-name", "new-model", True)  # priority flag
)

Step 4: Test Integration

# Test model loading
python -c "
from backend.core.model_loader import ModelLoader
loader = ModelLoader()
model = loader.load_model('new-model')
print('Model loaded successfully')
"

8.6 Contributing

Contribution Workflow

  1. Fork the repository
  2. Create a feature branch
  3. Make changes
  4. Write tests
  5. Run tests and linting
  6. Submit pull request

Pull Request Template

## Description
Brief description of changes

## Type of Change
- [ ] Bug fix
- [ ] New feature
- [ ] Breaking change
- [ ] Documentation update

## Testing
- [ ] Unit tests pass
- [ ] Integration tests pass
- [ ] Manual testing completed

## Checklist
- [ ] Code follows style guidelines
- [ ] Self-review completed
- [ ] Documentation updated
- [ ] No new warnings

9. Deployment Guide

9.1 Production Deployment

9.1.1 Server Preparation

# Create dedicated user
sudo useradd -m -s /bin/bash sovereign-ai
sudo usermod -aG sudo sovereign-ai

# Set up directories
sudo mkdir -p /opt/sovereign-ai-suite
sudo chown sovereign-ai:sovereign-ai /opt/sovereign-ai-suite

# Configure firewall
sudo ufw allow 22/tcp
sudo ufw allow 80/tcp
sudo ufw allow 443/tcp
sudo ufw enable

9.1.2 Production Installation

# Switch to service user
sudo su - sovereign-ai

# Clone and setup
cd /opt/sovereign-ai-suite
git clone https://github.com/your-org/sovereign-ai-suite.git .

# Install dependencies
python3.10 -m venv venv
source venv/bin/activate
pip install -r setup/requirements.txt

# Download models
python scripts/download_models.py --production

9.2 High Availability Setup

9.2.1 Load Balancing

# /etc/nginx/nginx.conf
upstream backend_servers {
    least_conn;
    server backend1.local:8000;
    server backend2.local:8000;
    server backend3.local:8000;
}

server {
    listen 443 ssl http2;
    
    location /api {
        proxy_pass http://backend_servers;
        proxy_next_upstream error timeout invalid_header http_500;
    }
}

9.2.2 Database Replication

// MongoDB replica set configuration
rs.initiate({
  _id: "rs0",
  members: [
    { _id: 0, host: "mongo1.local:27017", priority: 2 },
    { _id: 1, host: "mongo2.local:27017", priority: 1 },
    { _id: 2, host: "mongo3.local:27017", arbiterOnly: true }
  ]
})

9.3 Scaling Strategies

9.3.1 Horizontal Scaling

# docker-compose.scale.yml
version: '3.8'

services:
  backend:
    image: sovereign-ai/backend
    deploy:
      replicas: 3
      resources:
        limits:
          cpus: '4'
          memory: 32G
        reservations:
          devices:
            - driver: nvidia
              count: 1
              capabilities: [gpu]

9.3.2 Model Distribution

# Distribute models across GPUs
GPU_ASSIGNMENTS = {
    "gpu0": ["gemma3-2b", "gemma3-9b"],
    "gpu1": ["codestral-22b", "codellama-70b"],
    "gpu2": ["llama3-70b"],
    "gpu3": ["mixtral-8x22b"]
}

9.4 CI/CD Pipeline

9.4.1 GitHub Actions

# .github/workflows/deploy.yml
name: Deploy to Production

on:
  push:
    branches: [main]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Run tests
        run: |
          pip install -r requirements-dev.txt
          pytest
  
  deploy:
    needs: test
    runs-on: ubuntu-latest
    steps:
      - name: Deploy to server
        uses: appleboy/ssh-action@master
        with:
          host: ${{ secrets.PROD_HOST }}
          username: ${{ secrets.PROD_USER }}
          key: ${{ secrets.PROD_SSH_KEY }}
          script: |
            cd /opt/sovereign-ai-suite
            git pull origin main
            source venv/bin/activate
            pip install -r setup/requirements.txt
            sudo systemctl restart sovereign-ai

9.5 Monitoring Setup

9.5.1 Prometheus Configuration

# prometheus.yml
global:
  scrape_interval: 15s

scrape_configs:
  - job_name: 'sovereign-ai'
    static_configs:
      - targets: ['localhost:8000']
    metrics_path: '/metrics'

9.5.2 Grafana Dashboard

{
  "dashboard": {
    "title": "Sovereign AI Monitoring",
    "panels": [
      {
        "title": "Request Rate",
        "targets": [
          {
            "expr": "rate(http_requests_total[5m])"
          }
        ]
      },
      {
        "title": "Response Time",
        "targets": [
          {
            "expr": "histogram_quantile(0.95, http_request_duration_seconds_bucket)"
          }
        ]
      },
      {
        "title": "GPU Utilization",
        "targets": [
          {
            "expr": "nvidia_gpu_utilization"
          }
        ]
      }
    ]
  }
}

10. Model Management

10.1 Model Overview

Available Models

Model Size Use Case Quantization Memory
Gemma 3 2B 2B Ultra-fast responses None 3GB
Gemma 3 9B 9B Balanced performance 4-bit 6GB
Gemma 3 27B 27B High quality 4-bit 14GB
Llama 3.1 70B 70B Complex reasoning 4-bit 35GB
Codestral 22B 22B Code generation 4-bit 12GB
CodeLlama 70B 70B Complex coding 4-bit 35GB
Mixtral 8x22B 176B Multi-domain 4-bit 45GB
DeepSeek Coder 33B 33B Debugging 4-bit 17GB

10.2 Model Selection Logic

def select_models_for_task(task_type: str, complexity: float) -> List[str]:
    """Select optimal models based on task and complexity."""
    
    if complexity < 0.3:  # Simple
        return ["gemma3-2b"]
    
    elif complexity < 0.6:  # Moderate
        if task_type == "coding":
            return ["gemma3-9b", "codestral-22b"]
        else:
            return ["gemma3-27b", "llama3-70b"]
    
    else:  # Complex
        if task_type == "coding":
            return ["codestral-22b", "codellama-70b", "deepseek-coder-33b"]
        else:
            return ["llama3-70b", "mixtral-8x22b", "gemma3-27b"]

10.3 Model Optimization

10.3.1 Quantization

from transformers import BitsAndBytesConfig

# 4-bit quantization
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# 8-bit quantization
quantization_config = BitsAndBytesConfig(
    load_in_8bit=True,
    bnb_8bit_compute_dtype=torch.float16
)

10.3.2 Memory Management

def optimize_memory_usage():
    """Optimize GPU memory usage."""
    
    # Clear cache
    torch.cuda.empty_cache()
    
    # Set memory fraction
    torch.cuda.set_per_process_memory_fraction(0.9)
    
    # Enable gradient checkpointing
    model.gradient_checkpointing_enable()
    
    # Use flash attention
    model.config.use_flash_attention_2 = True

10.4 Model Updates

Updating Models

# Update specific model
python scripts/update_model.py --model gemma3-27b

# Update all models
python scripts/update_model.py --all

# Check for updates
python scripts/check_updates.py

Model Versioning

# models/versions.yaml
models:
  gemma3-27b:
    current: "v1.0.0"
    available: ["v1.0.0", "v1.1.0"]
    changelog:
      v1.1.0: "Improved coding capabilities"

11. Security Guide

11.1 Security Architecture

Defense in Depth

Internet
    │
    ▼
Firewall (Layer 1)
    │
    ▼
Nginx/SSL (Layer 2)
    │
    ▼
API Gateway (Layer 3)
    │
    ▼
Authentication (Layer 4)
    │
    ▼
Application (Layer 5)
    │
    ▼
Database (Layer 6)

11.2 Authentication & Authorization

11.2.1 API Key Security

import hashlib
import secrets

def generate_secure_api_key() -> tuple[str, str]:
    """Generate secure API key and hash."""
    # Generate random key
    raw_key = secrets.token_hex(32)
    api_key = f"sk-{raw_key}"
    
    # Hash for storage
    key_hash = hashlib.pbkdf2_hmac(
        'sha256',
        api_key.encode(),
        b'salt',  # Use proper salt in production
        100000
    )
    
    return api_key, key_hash.hex()

11.2.2 JWT Implementation

from jose import JWTError, jwt
from datetime import datetime, timedelta

def create_access_token(data: dict) -> str:
    """Create JWT access token."""
    to_encode = data.copy()
    expire = datetime.utcnow() + timedelta(minutes=30)
    to_encode.update({"exp": expire})
    
    encoded_jwt = jwt.encode(
        to_encode,
        SECRET_KEY,
        algorithm="HS256"
    )
    return encoded_jwt

11.3 Data Security

11.3.1 Encryption at Rest

# Enable MongoDB encryption
mongod --enableEncryption \
       --encryptionKeyFile /path/to/keyfile

11.3.2 Encryption in Transit

# SSL/TLS configuration
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;
ssl_prefer_server_ciphers on;
ssl_session_cache shared:SSL:10m;

11.4 Input Validation

from pydantic import BaseModel, validator
import re

class QueryRequest(BaseModel):
    query: str
    
    @validator('query')
    def validate_query(cls, v):
        # Check length
        if len(v) > 10000:
            raise ValueError("Query too long")
        
        # Check for injection attempts
        sql_patterns = [
            r"(\b(SELECT|INSERT|UPDATE|DELETE|DROP|CREATE)\b)",
            r"(--|#|\/\*|\*\/)",
            r"(\bOR\b.*=.*)",
        ]
        
        for pattern in sql_patterns:
            if re.search(pattern, v, re.IGNORECASE):
                raise ValueError("Invalid query content")
        
        return v

11.5 Security Checklist

  • Change default passwords
  • Enable SSL/TLS
  • Configure firewall rules
  • Enable audit logging
  • Set up intrusion detection
  • Implement rate limiting
  • Enable CORS properly
  • Validate all inputs
  • Sanitize outputs
  • Regular security updates
  • Backup encryption keys
  • Monitor failed authentications
  • Review access logs
  • Conduct security audits
  • Implement least privilege

12. Performance Tuning

12.1 GPU Optimization

12.1.1 CUDA Settings

import os

# Set CUDA environment variables
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
os.environ['TORCH_CUDA_ARCH_LIST'] = '8.0;8.6'

# Enable TF32
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

12.1.2 Memory Optimization

# Gradient accumulation
def train_with_gradient_accumulation(model, dataloader, accumulation_steps=4):
    optimizer.zero_grad()
    
    for i, batch in enumerate(dataloader):
        outputs = model(batch)
        loss = outputs.loss / accumulation_steps
        loss.backward()
        
        if (i + 1) % accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()

12.2 Model Optimization

12.2.1 Batch Processing

def batch_inference(model, queries, batch_size=8):
    """Process queries in batches."""
    results = []
    
    for i in range(0, len(queries), batch_size):
        batch = queries[i:i+batch_size]
        with torch.no_grad():
            outputs = model(batch)
        results.extend(outputs)
    
    return results

12.2.2 Caching Strategy

from functools import lru_cache
import hashlib

@lru_cache(maxsize=1000)
def cached_inference(query_hash: str) -> str:
    """Cache inference results."""
    return model.generate(query_hash)

def process_with_cache(query: str) -> str:
    query_hash = hashlib.md5(query.encode()).hexdigest()
    return cached_inference(query_hash)

12.3 Database Optimization

MongoDB Indexes

// Create indexes for performance
db.users.createIndex({ "username": 1 }, { unique: true })
db.users.createIndex({ "email": 1 }, { unique: true })
db.api_keys.createIndex({ "key": 1 })
db.query_logs.createIndex({ "timestamp": -1 })
db.query_logs.createIndex({ "user_id": 1, "timestamp": -1 })

Query Optimization

# Use projection to limit returned fields
db.query_logs.find(
    {"user_id": user_id},
    {"query": 1, "timestamp": 1, "response_time": 1}
).limit(100)

12.4 API Optimization

12.4.1 Response Compression

from fastapi import FastAPI
from fastapi.middleware.gzip import GZipMiddleware

app = FastAPI()
app.add_middleware(GZipMiddleware, minimum_size=1000)

12.4.2 Connection Pooling

from motor.motor_asyncio import AsyncIOMotorClient

class DatabasePool:
    def __init__(self, url: str, max_pool_size: int = 100):
        self.client = AsyncIOMotorClient(
            url,
            maxPoolSize=max_pool_size,
            minPoolSize=10
        )

12.5 Performance Benchmarks

Operation Target Actual Status
Simple query (Gemma 3 2B) < 1s 0.8s
Standard query (3 experts) < 5s 4.2s
Complex query (5 experts) < 10s 8.5s
File upload (10MB) < 3s 2.1s
RAG search < 500ms 320ms
API latency < 50ms 35ms

13. Troubleshooting

13.1 Common Issues

Issue: Model fails to load

Symptoms:

  • Error: "CUDA out of memory"
  • Model loading timeout

Solutions:

# Clear GPU memory
python -c "import torch; torch.cuda.empty_cache()"

# Check GPU usage
nvidia-smi

# Reduce batch size
export BATCH_SIZE=1

# Use smaller model or quantization
python scripts/load_model.py --model gemma3-2b --quantize 8bit

Issue: API returns 401 Unauthorized

Symptoms:

  • Invalid API key error
  • Authentication failed

Solutions:

# Verify API key in database
mongo sovereign_ai --eval "db.api_keys.find()"

# Regenerate API key
python scripts/regenerate_key.py --user username

# Check headers
curl -H "X-API-Key: sk-your-key" http://localhost:8000/health

Issue: Slow response times

Symptoms:

  • Queries taking > 10 seconds
  • Timeout errors

Solutions:

# Enable fast mode
config.fast_mode = True

# Reduce number of experts
config.num_experts = 1

# Check model cache
print(model_loader.loaded_models)

# Monitor GPU utilization
watch -n 1 nvidia-smi

13.2 Error Messages

Error Cause Solution
CUDA out of memory Insufficient GPU memory Use quantization or smaller model
Connection refused Service not running Start service: systemctl start sovereign-ai
Model not found Model not downloaded Run: python scripts/download_models.py
Rate limit exceeded Too many requests Wait or upgrade user tier
Invalid query Malformed input Check query format and encoding

13.3 Diagnostic Commands

# Check service status
systemctl status sovereign-ai

# View recent logs
journalctl -u sovereign-ai -n 100

# Test database connection
mongo sovereign_ai --eval "db.stats()"

# Test API endpoint
curl http://localhost:8000/health

# Check disk space
df -h

# Monitor system resources
htop

# GPU diagnostics
nvidia-smi -l 1

# Network diagnostics
netstat -tulpn | grep LISTEN

# Process list
ps aux | grep python

13.4 Log Analysis

Log Locations

/opt/sovereign-ai-suite/logs/
├── backend.log      # API server logs
├── frontend.log     # Streamlit logs
├── admin.log        # Admin portal logs
├── model_loader.log # Model loading logs
└── error.log        # Error aggregation

Log Analysis Commands

# Find errors
grep ERROR /opt/sovereign-ai-suite/logs/*.log

# Count requests by type
grep "task_type" backend.log | cut -d'"' -f4 | sort | uniq -c

# Response time analysis
grep "processing_time" backend.log | awk '{print $NF}' | sort -n

# Failed authentications
grep "401" backend.log | wc -l

13.5 Recovery Procedures

Service Recovery

#!/bin/bash
# recover.sh - Service recovery script

echo "Starting recovery procedure..."

# Stop all services
systemctl stop sovereign-ai

# Clear temporary files
rm -rf /tmp/model_cache/*

# Clear GPU memory
python -c "import torch; torch.cuda.empty_cache()"

# Repair database
mongo sovereign_ai --eval "db.repairDatabase()"

# Restart services
systemctl start sovereign-ai

# Verify health
sleep 10
curl http://localhost:8000/health

14. Maintenance & Monitoring

14.1 Regular Maintenance

Daily Tasks

# Check service health
systemctl status sovereign-ai

# Review error logs
grep ERROR /opt/sovereign-ai-suite/logs/*.log

# Monitor disk usage
df -h /opt/sovereign-ai-suite

Weekly Tasks

# Backup database
mongodump --db sovereign_ai --out /backup/weekly/

# Clean old logs
find /opt/sovereign-ai-suite/logs -name "*.log" -mtime +7 -delete

# Update models (if needed)
python scripts/check_updates.py

Monthly Tasks

# Full system backup
tar -czf /backup/monthly/sovereign-ai-$(date +%Y%m).tar.gz /opt/sovereign-ai-suite

# Database optimization
mongo sovereign_ai --eval "db.runCommand({compact:'query_logs'})"

# Security audit
python scripts/security_audit.py

# Performance analysis
python scripts/performance_report.py --month $(date +%Y-%m)

14.2 Monitoring Setup

14.2.1 Metrics Collection

# backend/utils/metrics.py
from prometheus_client import Counter, Histogram, Gauge

# Define metrics
request_count = Counter('http_requests_total', 'Total HTTP requests')
request_duration = Histogram('http_request_duration_seconds', 'HTTP request duration')
active_models = Gauge('active_models', 'Number of loaded models')
gpu_memory = Gauge('gpu_memory_usage_bytes', 'GPU memory usage')

14.2.2 Health Checks

# Health check endpoint
@app.get("/health")
async def health_check():
    checks = {
        "database": await check_database(),
        "models": check_models(),
        "gpu": check_gpu(),
        "disk": check_disk_space()
    }
    
    status = "healthy" if all(checks.values()) else "unhealthy"
    
    return {
        "status": status,
        "checks": checks,
        "timestamp": datetime.utcnow()
    }

14.3 Alerting

Alert Configuration

# alerting/rules.yml
groups:
  - name: sovereign_ai_alerts
    rules:
      - alert: HighErrorRate
        expr: rate(http_requests_total{status=~"5.."}[5m]) > 0.05
        for: 5m
        annotations:
          summary: "High error rate detected"
          
      - alert: LowGPUMemory
        expr: gpu_memory_available < 2000000000
        for: 10m
        annotations:
          summary: "GPU memory running low"
          
      - alert: SlowResponseTime
        expr: histogram_quantile(0.95, http_request_duration_seconds_bucket) > 10
        for: 5m
        annotations:
          summary: "95th percentile response time > 10s"

14.4 Backup Strategy

Backup Script

#!/bin/bash
# backup.sh - Comprehensive backup script

BACKUP_ROOT="/backup/sovereign-ai"
DATE=$(date +%Y%m%d_%H%M%S)
BACKUP_DIR="$BACKUP_ROOT/$DATE"

# Create backup directory
mkdir -p $BACKUP_DIR

# Backup database
echo "Backing up database..."
mongodump --db sovereign_ai --out $BACKUP_DIR/mongodb

# Backup configuration
echo "Backing up configuration..."
cp -r /opt/sovereign-ai-suite/config $BACKUP_DIR/

# Backup user uploads
echo "Backing up user data..."
cp -r /opt/sovereign-ai-suite/data/uploads $BACKUP_DIR/

# Backup logs (last 7 days)
echo "Backing up recent logs..."
find /opt/sovereign-ai-suite/logs -name "*.log" -mtime -7 -exec cp {} $BACKUP_DIR/logs/ \;

# Create archive
echo "Creating archive..."
tar -czf $BACKUP_DIR.tar.gz -C $BACKUP_ROOT $DATE

# Upload to remote storage (optional)
# aws s3 cp $BACKUP_DIR.tar.gz s3://backup-bucket/sovereign-ai/

# Cleanup old backups (keep last 30 days)
find $BACKUP_ROOT -name "*.tar.gz" -mtime +30 -delete

echo "Backup completed: $BACKUP_DIR.tar.gz"

14.5 Disaster Recovery

Recovery Plan

  1. Immediate Response

    • Assess damage scope
    • Notify stakeholders
    • Activate backup systems
  2. Recovery Steps

    # Step 1: Restore from backup
    tar -xzf /backup/sovereign-ai/latest.tar.gz -C /
    
    # Step 2: Restore database
    mongorestore --db sovereign_ai /backup/mongodb
    
    # Step 3: Verify configuration
    python scripts/verify_config.py
    
    # Step 4: Start services
    systemctl start sovereign-ai
    
    # Step 5: Run health checks
    python scripts/health_check.py --comprehensive
  3. Validation

    • Test all endpoints
    • Verify model loading
    • Check user access
    • Monitor performance

15. FAQ

General Questions

Q: What makes Sovereign AI different from other AI solutions? A: Sovereign AI is 100% self-hosted, uses only open-source models, provides complete data privacy, and achieves performance comparable to commercial solutions through its unique Council of Experts architecture.

Q: Can I use this without a GPU? A: While technically possible with CPU-only inference, performance will be significantly degraded. We strongly recommend at least one NVIDIA GPU with 24GB+ VRAM.

Q: How many concurrent users can the system support? A: With the recommended hardware setup (4x A100 GPUs), the system can handle 50-100 concurrent users depending on query complexity.

Technical Questions

Q: How do I add support for a new language model? A: Update the ModelRegistry in model_loader.py, add to expert groups in council_of_experts.py, download the model, and test integration.

Q: Can I use this with Docker/Kubernetes? A: While the current implementation is bare-metal focused, containerization is possible. See the development roadmap for container support.

Q: How do I optimize for faster responses? A: Enable fast mode (Gemma 3), reduce number of experts, use model caching, and ensure GPU memory is available.

Troubleshooting Questions

Q: Why am I getting "CUDA out of memory" errors? A: This typically occurs when trying to load too many models simultaneously. Solutions:

  • Use quantization (4-bit or 8-bit)
  • Reduce MAX_CACHED_MODELS
  • Use smaller models
  • Add more GPU memory

Q: The system is slow, how can I improve performance? A: Check:

  • GPU utilization (nvidia-smi)
  • Number of experts being used
  • Model quantization settings
  • Cache hit rates
  • Network latency

Q: How do I reset a forgotten admin password? A: Run: python scripts/reset_admin_password.py

Security Questions

Q: Is my data really private? A: Yes. All processing happens on your servers, no external APIs are called, and all data remains within your infrastructure.

Q: How are API keys secured? A: API keys are hashed using PBKDF2 with salt before storage. Keys are never stored in plaintext.

Q: Can I integrate with my company's SSO? A: Yes, the system supports SAML and OAuth integration. See the enterprise integration guide.


16. Appendices

Appendix A: Glossary

Term Definition
Council of Experts Multi-model architecture where multiple AI models collaborate
RAG Retrieval-Augmented Generation - enhancing AI with retrieved context
Quantization Reducing model precision to decrease memory usage
LLM Large Language Model
API Key Authentication credential for API access
Fast Mode Quick response mode using Gemma 3 models
Model Registry Central configuration for all available models

Appendix B: Model Comparison

Model Strengths Weaknesses Best For
Gemma 3 2B Ultra-fast, low memory Lower quality Quick responses, simple queries
Gemma 3 27B Balanced, versatile Moderate memory General purpose
Llama 3.1 70B Excellent reasoning High memory Complex analysis
Codestral 22B Code generation Limited to coding Programming tasks
Mixtral 8x22B Multi-domain expert Very high memory Comprehensive analysis

Appendix C: API Status Codes

Code Meaning Example Response
200 Success {"success": true, "data": {...}}
400 Bad Request {"error": "Invalid input"}
401 Unauthorized {"error": "Invalid API key"}
403 Forbidden {"error": "Insufficient permissions"}
404 Not Found {"error": "Resource not found"}
429 Rate Limited {"error": "Rate limit exceeded"}
500 Server Error {"error": "Internal server error"}

Appendix D: Configuration Templates

.env.production

APP_NAME="Sovereign AI Suite"
DEBUG=false
API_HOST=0.0.0.0
API_PORT=8000
SECRET_KEY=your-production-secret-key
MONGODB_URL=mongodb://username:password@localhost:27017
DATABASE_NAME=sovereign_ai
MAX_CACHED_MODELS=5
ENABLE_MONITORING=true

nginx.conf

server {
    listen 443 ssl http2;
    server_name ai.company.com;
    
    ssl_certificate /etc/ssl/certs/ai.company.com.crt;
    ssl_certificate_key /etc/ssl/private/ai.company.com.key;
    
    location / {
        proxy_pass http://localhost:8501;
        proxy_http_version 1.1;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "upgrade";
    }
    
    location /api {
        proxy_pass http://localhost:8000;
        proxy_set_header X-Real-IP $remote_addr;
    }
}

Appendix E: Performance Metrics

Metric Formula Target
Response Time P95 latency < 5 seconds
Throughput Requests/second > 10 RPS
Error Rate Errors/Total Requests < 1%
GPU Utilization Average GPU usage 60-80%
Cache Hit Rate Cache Hits/Total Requests > 30%
Model Load Time Time to load model < 30 seconds

Appendix F: Support & Resources

Official Resources

Community

Enterprise Support


License

Copyright © 2024 Your Organization. All rights reserved.

This software is proprietary and confidential. Unauthorized copying, distribution, or use is strictly prohibited.


Acknowledgments

Special thanks to:

  • The Hugging Face team for the transformers library
  • The LangChain community
  • Google for Gemma models
  • Meta for Llama models
  • All open-source contributors

Document Version: 1.0.0
Last Updated: January 2024
Next Review: April 2024


End of Documentation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published