Skip to content

BoazGithub/FWDNNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

27 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌍 FWDNNet

main_FWDNNet_framework_design_revision

FWDNNet: Cross-Heterogeneous Encoder Fusion via Feature-Level TensorDot Operations for Land-Cover Mapping

Python 3.7+ PyTorch 1.7.1 CUDA 10.1 License

Status IEEE TGRS 2025 Accuracy mIoU

✨ Official PyTorch Implementation ✨
πŸŽ‰ 31-December-2025 Accepted at IEEE Transactions on Geoscience and Remote Sensing (IEEE TGRS) πŸŽ‰

Key Features β€’ Getting Started β€’ Datasets β€’ Results β€’ Citation β€’ Contact


πŸ“’ Latest News

+ 🎊 31-December-2025: FWDNNet accepted for publication in IEEE TGRS!
+ πŸ“ October-November 2025: Manuscript submitted to IEEE TGRS
+ πŸš€ October 2023: sKwanda_V1,2 datasets publicly released
+ πŸš€ March 2023: Code and datasets developed

πŸ‘₯ Authors

Lead Authors

Boaz MwubahimanaΒΉ Β· Graduate Student Member, IEEE
Yan JianguoΒΉΒ² Β· Corresponding Author
Dingruibo MiaoΒΉ Β· Corresponding Author

Co-Authors

Swalpa Kumar RoyΒ³ Β· Senior Member, IEEE
Zhuohong Li⁴
Le MaΒΉ
Clarisse Kagoyire⁡
Haonan GuoΒΉ Β· Member, IEEE
Maurice Mugabowindekwe⁢
Elias Nyandwi⁡
Isaac Nzayisenga⁷
Hafashimana Athanase⁸
Eugene Maridadi⁹
Jean Baptiste Nsengiyumva¹⁰
Elie ByukusengeΒΉΒΉ
Remy DukundaneΒΉΒ²
Gaspard Rwanyiziri⁡
Xiao HuangΒΉΒ³

πŸ›οΈ Affiliations

  1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, China
  2. Xinjiang Astronomical Observatory, Chinese Academy of Sciences, China
  3. Department of Computer Science and Engineering, Tezpur University, India
  4. Nicholas School of the Environment, Duke University, USA
  5. Center for Geographic Information Systems and Remote Sensing (CGIS), University of Rwanda
  6. Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
  7. College of Geography and Remote Sensing, Hohai University, China
  8. AIMS Research and Innovation Centre & African Centre of Excellence in Data Science, University of Rwanda
  9. Rwanda Environment Management Authority (REMA), Rwanda
  10. WaterAid Rwanda, Kigali, Rwanda
  11. Water for People Rwanda, Kigali, Rwanda
  12. College of Engineering, Carnegie Mellon University, Rwanda
  13. Department of Environmental Sciences, Emory University, USA

πŸ“§ Corresponding Authors:


πŸ“– Abstract

Problem Solution Application

We present FWDNNet, a novel encoder-decoder architecture that integrates heterogeneous deep learning backbones through innovative TensorDot fusion modules for high-resolution land cover mapping. Unlike traditional fusion approaches that rely on simple concatenation or averaging, FWDNNet preserves tensor structures while enabling adaptive, probabilistic feature weighting across five specialized backbone encoders.

πŸ”‘ Key Innovation

  • TensorDot Fusion: High-order multilinear transformations that capture complex inter-architectural dependencies
  • Probabilistic Attention: Variational inference-based adaptive backbone weighting
  • Heterogeneous Integration: Seamless fusion of CNNs (ResNet34, InceptionV3, VGG16, EfficientNet-B3) and Transformers (Swin-T)

🎯 Key Features

Accuracy
State-of-the-Art Accuracy
+2.2% over best baseline
mIoU
Superior Segmentation
+1.7% mIoU improvement
Speed
Inference Efficiency
58.2ms per image
Memory
Resource Efficient
12.85GB GPU memory

πŸ† Performance Highlights

Metric FWDNNet Best Baseline Improvement
🎯 Overall Accuracy 95.3% 93.1% +2.2% ↑
πŸ“Š mean IoU (mIoU) 91.8% 90.1% +1.7% ↑
⚑ Inference Time 58.2ms 73.8ms -21.1% ↓
πŸ’Ύ Memory Usage 12.85GB 95.74GB -86.6% ↓
πŸ”’ Parameters 35.0M 41.0M -14.6% ↓
🌍 Transfer Score 97.1% 92.3% +4.8% ↑

πŸ—οΈ Architecture

### Network Overview
graph TB
    A[Input Image<br/>HΓ—WΓ—C] --> B1[ResNet34]
    A --> B2[InceptionV3]
    A --> B3[VGG16]
    A --> B4[EfficientNet-B3]
    A --> B5[Swin Transformer]
    
    B1 --> C[TensorDot<br/>Fusion Module]
    B2 --> C
    B3 --> C
    B4 --> C
    B5 --> C
    
    C --> D[Probabilistic<br/>Attention]
    D --> E[Tucker<br/>Decomposer]
    E --> F[Unified<br/>Decoder]
    F --> G[Segmentation<br/>Output]
    
    style C fill:#ff9999
    style D fill:#99ccff
    style E fill:#99ff99
    style F fill:#ffcc99
Loading

🧩 Core Components

1️⃣ Heterogeneous Encoders (Click to expand)

Five specialized backbone networks for parallel feature extraction:

Encoder Purpose Key Feature
πŸ”· ResNet34 Residual Learning Deep feature extraction
πŸ”Ά InceptionV3 Multi-scale Multiple receptive fields
πŸ”΅ VGG16 Hierarchical Layer-wise features
🟒 EfficientNet-B3 Efficiency Compound scaling
🟣 Swin Transformer Global Context Shifted window attention
2️⃣ TensorDot Fusion Module (Click to expand)

Mathematical Formulation:

𝒯_fused = 𝒒 ×₁ 𝒯₁ Γ—β‚‚ 𝒯₂ ... Γ—_M 𝒯_M
  • Preserves tensor structure
  • Captures high-order interactions
  • Learnable core tensor 𝒒
3️⃣ Probabilistic Attention (Click to expand)

Variational Inference Weighting:

𝒲_att = softmax(f_ΞΈ(𝒯₁, 𝒯₂, ..., 𝒯_M))
  • Adaptive backbone selection
  • Scene-dependent weighting
  • Reduces feature redundancy
4️⃣ Multi-Objective Loss (Click to expand)

Comprehensive Loss Function:

β„’_total = β„’_focal + λ₁ℒ_consist + Ξ»β‚‚β„’_uncert + λ₃ℒ_div + Ξ»β‚„β„’_sparse + Ξ»β‚…β„’_bound
  • Focal loss for class imbalance
  • Consistency regularization
  • Uncertainty estimation
  • Diversity promotion
  • Boundary preservation

πŸ“Š Datasets

🌐 Multi-Regional Coverage

πŸ™οΈ Dubai Dataset

Urban Landscapes

  • πŸ“ Location: UAE
  • πŸ›°οΈ Sensor: WorldView-3, QuickBird
  • πŸ“ Resolution: 0.31-2.4m
  • πŸ–ΌοΈ Images: 1,500
  • πŸ“ Area: 450 kmΒ²
  • 🏷️ Classes: Built-up, Vegetation, Water, Other

🌾 Nyagatare Dataset

Agricultural Lands

  • πŸ“ Location: Rwanda
  • πŸ›°οΈ Sensor: Google Earth
  • πŸ“ Resolution: 0.5-1.07m
  • πŸ–ΌοΈ Images: 2,200
  • πŸ“ Area: 1,200 kmΒ²
  • 🏷️ Classes: Crops, Grassland, Forest, Water

🌾 Oklahoma Dataset

Great Plains

  • πŸ“ Location: USA
  • πŸ›°οΈ Sensor: NAIP
  • πŸ“ Resolution: 0.5-0.60m
  • πŸ–ΌοΈ Images: 1,800
  • πŸ“ Area: 2,800 kmΒ²
  • 🏷️ Classes: 7 land cover types

πŸ“₯ Download Links

Dataset Download Models Download

πŸ“ Dataset Structure

data/
β”œβ”€β”€ Dubai/
β”‚   β”œβ”€β”€ train/
β”‚   β”‚   β”œβ”€β”€ images/          # 512Γ—512 RGB patches
β”‚   β”‚   └── labels/          # Ground truth masks
β”‚   β”œβ”€β”€ val/
β”‚   β”‚   β”œβ”€β”€ images/
β”‚   β”‚   └── labels/
β”‚   └── test/
β”‚       β”œβ”€β”€ images/
β”‚       └── labels/
β”œβ”€β”€ Nyagatare/
β”‚   └── [same structure]
└── Oklahoma/
    └── [same structure]

πŸš€ Getting Started

πŸ“‹ Requirements

Core Dependencies

Python >= 3.7
PyTorch >= 1.7.1
torchvision >= 0.8.2
CUDA >= 10.1

Additional Packages

opencv-python >= 4.5.5
numpy >= 1.19.5
matplotlib >= 3.3.4
scikit-learn >= 0.24.2
wandb >= 0.13.10

βš™οΈ Installation

# 1️⃣ Clone the repository
git clone https://github.com/YourUsername/FWDNNet.git
cd FWDNNet

# 2️⃣ Create conda environment
conda create -n fwdnnet python=3.7 -y
conda activate fwdnnet

# 3️⃣ Install PyTorch (CUDA 10.1)
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch

# 4️⃣ Install other dependencies
pip install -r requirements.txt

# 5️⃣ Verify installation
python -c "import torch; print(f'PyTorch: {torch.__version__}, CUDA: {torch.cuda.is_available()}')"

πŸ“¦ Quick Setup

# Download datasets and models
bash scripts/download_data.sh

# Prepare dataset
python utils/prepare_dataset.py --dataset all

# Run quick test
python test_installation.py

πŸŽ“ Training

πŸƒ Quick Start Training

# Train on Dubai dataset (default config)
python train.py --dataset Dubai

# Train with custom config
python train.py --config configs/fwdnnet_dubai.yaml

# Multi-GPU training
python -m torch.distributed.launch --nproc_per_node=4 train.py --dataset Dubai

βš™οΈ Training Configuration

πŸ“ Configuration File Example (Click to expand)
# configs/fwdnnet_dubai.yaml
model:
  name: FWDNNet
  encoders:
    - resnet34
    - inception_v3
    - vgg16
    - efficientnet_b3
    - swin_t
  fusion:
    type: tensordot
    tucker_rank: [64, 64, 64]
  attention:
    type: probabilistic
    temperature: 0.1

training:
  batch_size: 16
  epochs: 200
  learning_rate: 1e-3
  optimizer:
    name: AdamW
    betas: [0.9, 0.999]
    weight_decay: 0.01
  scheduler:
    name: ExponentialLR
    gamma: 0.95
    step: 10
  early_stopping:
    patience: 20
    monitor: val_miou

loss:
  focal_weight: 1.0
  consistency_weight: 0.5
  uncertainty_weight: 0.3
  diversity_weight: 0.2
  boundary_weight: 0.4

data:
  input_size: [512, 512]
  num_classes: 4
  augmentation:
    flip: 0.5
    rotate: 45
    elastic: true
    gaussian_noise: 0.02

πŸ“Š Monitor Training

# With Weights & Biases
python train.py --dataset Dubai --use_wandb

# With TensorBoard
python train.py --dataset Dubai --use_tensorboard
tensorboard --logdir=runs/

πŸ”„ Resume Training

# Resume from checkpoint
python train.py --dataset Dubai --resume checkpoints/fwdnnet_epoch_50.pth

# Resume with different learning rate
python train.py --resume checkpoints/fwdnnet_epoch_50.pth --lr 1e-4

πŸ§ͺ Evaluation & Inference

πŸ“ˆ Evaluation

# Evaluate on test set
python test.py --dataset Dubai --checkpoint checkpoints/fwdnnet_best.pth

# Evaluate with visualization
python test.py --dataset Dubai --checkpoint checkpoints/fwdnnet_best.pth --visualize

# Cross-domain evaluation
python test.py \
  --source_dataset Dubai \
  --target_dataset Nyagatare \
  --checkpoint checkpoints/fwdnnet_dubai.pth

πŸ–ΌοΈ Inference

# Single image inference
python inference.py \
  --input path/to/image.tif \
  --checkpoint checkpoints/fwdnnet_best.pth \
  --output results/prediction.png

# Batch inference
python inference.py \
  --input_dir path/to/images/ \
  --checkpoint checkpoints/fwdnnet_best.pth \
  --output_dir results/

# Large-scale inference (tiled processing)
python inference_large.py \
  --input large_image.tif \
  --checkpoint checkpoints/fwdnnet_best.pth \
  --tile_size 512 \
  --overlap 50 \
  --output result_mosaic.tif

πŸ“Š Results

πŸ† Quantitative Performance

Overall Performance Comparison

Model Accuracy (%) mIoU (%) F1-Score Inference (ms) Params (M) Memory (GB)
ResNet-34 93.5 89.0 0.800 45.2 24.0 93.30
InceptionV3 80.1 84.0 0.832 52.7 30.0 114.19
VGG-16 82.0 88.0 0.729 38.4 24.0 90.61
EfficientNet-B3 91.8 87.3 0.825 28.6 12.0 45.67
Swin-T 89.2 86.1 0.847 67.3 28.0 78.32
SegFormer-B2 92.4 88.7 0.859 41.2 25.0 62.48
HRNet-W32 94.1 90.1 0.862 73.8 41.0 95.74
FWDNNet 95.3 91.8 0.876 58.2 35.0 12.85

🌍 Dataset-Specific Results

Dubai Nyagatare Oklahoma
OA:    96.1%
mIoU:  92.4%
Built: 95.8%
Water: 96.7%
OA:    94.7%
mIoU:  91.1%
Crops: 94.3%
Forest: 93.2%
OA:    95.0%
mIoU:  91.6%
Veg:   92.7%
Water: 95.1%

πŸ”„ Cross-Domain Transfer

Source β†’ Target Source mIoU Target mIoU Transfer Score
Dubai β†’ Nyagatare 92.4% 90.1% 97.5%
Dubai β†’ Oklahoma 92.4% 89.3% 96.6%
Nyagatare β†’ Oklahoma 91.1% 89.8% 98.6%

πŸ’‘ Ablation Study

Configuration mIoU (%) Ξ” mIoU
Single Encoder (ResNet34) 89.0 -
Multi-Encoder (Avg) 90.1 +1.1%
+ TensorDot Fusion 91.3 +2.3%
+ Probabilistic Attention 91.8 +2.8%
Full FWDNNet 91.8 +2.8%

⚑ Computational Efficiency

Metric FWDNNet HRNet-W32 Improvement
πŸ• Training Time 6.2h 13.4h -53.7% ⬇️
πŸ’Ύ Memory Usage 12.85GB 95.74GB -86.6% ⬇️
πŸ”’ Parameters 35.0M 41.0M -14.6% ⬇️
πŸ”„ FLOPs 45.2G 52.1G -13.2% ⬇️
πŸ“ˆ Throughput 17.2 img/s 13.5 img/s +27.4% ⬆️

πŸ–ΌοΈ Visualizations

🎨 Qualitative Results

πŸ“‰ Training Curves

Figure_8_training_History11 (1)_page-0001

πŸ” Feature Maps: (attention weight visualizations)

feature_maps_GT_Probability_pridictions_page-0001

(qualitative comparison figures) main_FWDNNet_SoA_V4_page-0001

πŸ—ΊοΈ Large-Scale Mapping

(regional-scale inference results)

Oklahoma_size2Practical mapping_V2_page-0001

πŸ™ Acknowledgments

This work was supported by:

  • National Natural Science Foundation of China (Grant Nos. 42241116 and 42071332)
  • National Key R&D Program of China (Grant Nos. 2022YFF0503202 and 2022YFB3903605)
  • Macau Science and Technology Development Fund (SKL-LPS(MUST)-2021-2023)
  • Xinjiang Heaven Lake Talent Program (2022)

We acknowledge support from:

  • State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University
  • National Land Authority of Rwanda
  • Mohammed Bin Rashid Space Centre (MBRSC) for satellite imagery
  • U.S. Department of Agriculture's National Agriculture Imagery Program (NAIP) for aerial imagery

πŸ“ Citation

If you find this work useful in your research, please consider citing:

@ARTICLE{11343844,
  author={Mwubahimana, Boaz and Jianguo, Yan and Miao, Dingruibo and Roy, Swalpa Kumar and Li, Zhuohong and Ma, Le and Kagoyire, Clarisse and Guo, Haonan and Mugabowindekwe, Maurice and Nyandwi, Elias and Nzayisenga, Isaac and Athanase, Hafashimana and Maridadi, Eugene and Nsengiyumva, Jean Baptiste and Byukusenge, Elie and Dukundane, Remy and Rwanyiziri, Gaspard and Huang, Xiao},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={FWDNNet: Cross-Heterogeneous Encoder Fusion via Feature-Level TensorDot Operations for Land-Cover Mapping}, 
  year={2026},
  volume={},
  number={},
  pages={1-1},
  keywords={Remote sensing;Transformers;Computer architecture;Feature extraction;Semantic segmentation;Computational modeling;Computational efficiency;Semantics;Land surface;Faces;Convolutional neural networks (CNNs);deep learning;CNN-to-token conversion;TensorDot fusion;remote sensing (RS) segmentation},
  doi={10.1109/TGRS.2026.3652451}}

πŸ“š Related Publications

Our previous works on land cover mapping:

@ARTICLE{11124258,
  author={Mwubahimana, Boaz and Jianguo, Yan and Miao, Dingruibo and Li, Zhuohong and Guo, Haonan and Ma, Le and Mugabowindekwe, Maurice and Roy, Swalpa Kumar and Huang, Xiao and Nyandwi, Elias and Joseph, Tuyishimire and Habineza, Eric and Mwizerwa, Fidele and Athanase, Hafashimana and Rwanyiziri, Gaspard},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={C2FNet: Cross-Probabilistic Weak Supervision Learning for High-Resolution Land Cover Enhancement}, 
  year={2025},
  volume={63},
  number={},
  pages={1-30},
  keywords={Spatial resolution;Remote sensing;Land surface;Weak supervision;Training;Feature extraction;Annotations;Image resolution;Noise measurement;Earth;Coarse-to-fine networks (C2FNets);cross-resolution learning;deep neural networks;Earth observation;land cover mapping;probabilistic supervision;remote sensing;weakly supervised learning (WSL)},
  doi={10.1109/TGRS.2025.3598681}}
@article{Mwubahimana19052025,
  author = {Boaz Mwubahimana and Yan Jianguo and Maurice Mugabowindekwe and Xiao Huang and Elias Nyandwi and Joseph Tuyishimire and Eric Habineza and Fidele Mwizerwa and Dingruibo Miao},
  title = {Vision transformer-based feature harmonization network for fine-resolution land cover mapping},
  journal = {International Journal of Remote Sensing},
  volume = {46},
  number = {10},
  pages = {3736--3769},
  year = {2025},
  publisher = {Taylor \& Francis},
  doi = {10.1080/01431161.2025.2491816}
}

πŸ”— Related Resources

  • πŸ”¬ VHF-ParaNet: Vision Transformers Feature Harmonization [Code] [Paper]
  • πŸ“Š GLC10 Dataset: Global Land Cover at 10m resolution [Link]
  • πŸ›°οΈ Google Earth Engine: Satellite imagery access [Link]
  • πŸ—ΊοΈ ESRI Land Cover: Global land cover products [Link]

πŸ“ž Contact

πŸ’¬ Get in Touch

For questions, collaborations, or issues:

πŸ“§ Corresponding Authors:

πŸ“§ Lead Author:

πŸ› Issues & Contributions:


πŸ“„ License

Copyright (c) 2025 Wuhan University, State Key Laboratory of LIESMARS

This code and datasets are released for NON-COMMERCIAL and RESEARCH purposes only.

For commercial applications, please contact the corresponding authors:
- Yan Jianguo (jgyan@whu.edu.cn)
- Dingruibo Miao (miaodrb@whu.edu.cn)

Licensed under the MIT License for research purposes.

⭐ Star History

Star History Chart

If you find this work helpful, please consider giving us a ⭐!


πŸŽ“ Recommended Citation Format

IEEE Style:

APA Style:

Mwubahimana, B., Yan, J., Miao, D., Roy, S. K., Li, Z., Ma, L., ... & Huang, X. (2025). FWDNNet: Cross-Heterogeneous Encoder Fusion via Feature-Level TensorDot Operations for Land-Cover Mapping. IEEE Transactions on Geoscience and Remote Sensing. [Accepted for publication]


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages