Skip to content

A comprehensive collection of computer vision algorithms and image processing techniques implemented using OpenCV and Python. From basic image processing to advanced computer vision applications.

License

Notifications You must be signed in to change notification settings

Btzel/opencv-algorithm-implementations

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

OpenCV Algorithm Implementations

A comprehensive collection of computer vision algorithms and image processing techniques implemented using OpenCV and Python. From basic image processing to advanced computer vision applications.

Python OpenCV NumPy Status

🌟 Key Features

  • Image fundamentals and transformations
  • Image segmentation and filtering
  • Object detection and tracking
  • Face and feature detection
  • Background removal and inpainting
  • Style transfer and colorization
  • QR/Barcode handling
  • Motion tracking
  • Advanced image effects

📚 Implementations

Core Image Processing

  • Image Fundamentals

    • Color space manipulations (RGB, HSV)
    • Basic transformations and rotations
    • Scaling and interpolation
    • Arithmetic operations
    • Bitwise operations
    • Histogram equalization
  • Filtering & Enhancement

    • Color filtering
    • Blur detection and quantification
    • Noise handling
    • Image denoising
    • Convolutions and kernels

Detection & Recognition

  • Object Detection

    • YOLO implementation
    • Haar Cascade Classifiers
    • Face detection
    • Eye detection
    • Car detection
    • Pedestrian detection
  • Pattern Recognition

    • QR code generation and detection
    • Barcode generation and detection
    • Corner detection
    • Line detection
    • Circle detection
    • Blob detection

Advanced Techniques

  • Segmentation

    • Watershed segmentation
    • Grabcut background removal
    • Contour detection and analysis
    • Edge detection
    • Shape detection
    • Color clustering
  • Motion Analysis

    • Optical flow tracking
    • Dense optical flow
    • Mean shift tracking
    • CAMShift tracking
    • Background subtraction
    • Motion detection

Artistic Effects

  • Style Transfer
    • Neural style transfer
    • ECCV16 implementation
    • Caffe colorization
    • Tilt-shift effects
    • Image blending
    • Inpainting

🔧 Core Components

Image Processing Tools

# Color filtering example
def filter_colors(image, lower_bound, upper_bound):
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, lower_bound, upper_bound)
    return cv2.bitwise_and(image, image, mask=mask)

Motion Tracking

# Basic optical flow setup
def setup_optical_flow():
    feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
    lucas_kanade_params = dict(winSize=(15,15), maxLevel=2)
    return feature_params, lucas_kanade_params

🚀 Getting Started

Prerequisites

python 3.6+
opencv-python
numpy
matplotlib
dlib
pyzbar
python-barcode
scikit-image
tensorflow (for neural networks)

Installation

  1. Clone the repository:
git clone https://github.com/Btzel/opencv-algorithm-implementations.git
cd opencv-algorithm-implementations
  1. Install dependencies:
pip install -r requirements.txt

📁 Project Structure

opencv-algorithm-implementations/
└── opencv/
    ├── add_remove_noise.py          # Noise handling and reduction
    ├── Barcode_detecting.py         # Barcode detection
    ├── Barcode_generation.py        # Barcode creation
    ├── blur.py                      # Blur effects and detection
    ├── caffe_colorize_image.py      # Image colorization using Caffe
    ├── cam_shift_motion_tracking.py # CAMShift tracking algorithm
    ├── color_clustering.py          # K-means color clustering
    ├── color_object_tracking.py     # Color-based object tracking
    ├── comparing_images.py          # Image comparison techniques
    ├── create_mask.py              # Mask creation for image processing
    ├── dense_optical_flow_object_tracking.py  # Dense optical flow
    ├── detect_blur.py              # Blur detection
    ├── dlib_facial_landmark_detection.py     # Facial landmarks
    ├── eccv16_nst.py               # Neural style transfer
    ├── facial_recognition.py       # Face recognition
    ├── fg_subtraction1.py          # Background subtraction v1
    ├── fg_subtraction2.py          # Background subtraction v2
    ├── filtering_colors.py         # Color filtering
    ├── fundamentals.py             # OpenCV basics
    ├── grabcut_bg_removal.py       # Background removal
    ├── haar_cascade_classifiers.py # Object detection
    ├── histogram_equalization.py   # Histogram processing
    ├── image_segmentation.py       # Image segmentation
    ├── inpainting_images.py        # Image restoration
    ├── mean_shift_motion_tracking.py # Mean-shift tracking
    ├── neural_style_transfer.py    # Style transfer
    ├── OCR_text_detection.py       # Text detection
    ├── optical_flow_object_tracking.py # Optical flow
    ├── QR_detecting.py             # QR code detection
    ├── QR_generation.py            # QR code creation
    ├── tilt_shift_effects.py       # Tilt-shift effects
    ├── transform_perspectives.py    # Perspective transformation
    ├── watershed_image_segmentation.py # Watershed algorithm
    └── yolov3.py                   # YOLO object detection

🤝 Contributing

Contributions are welcome! Feel free to:

  1. Fork the repository
  2. Create a feature branch
  3. Submit a Pull Request

📖 Documentation

Each implementation includes:

  • Detailed comments explaining the algorithm
  • Usage examples
  • Parameter explanations
  • Visual output examples where applicable

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

⚡ Future Improvements

  • Deep learning integration
  • Real-time video processing
  • GPU acceleration
  • Additional styling effects
  • More detection models
  • Performance optimizations

Note: This repository is actively maintained and new implementations are being added regularly.

About

A comprehensive collection of computer vision algorithms and image processing techniques implemented using OpenCV and Python. From basic image processing to advanced computer vision applications.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages