A comprehensive collection of computer vision algorithms and image processing techniques implemented using OpenCV and Python. From basic image processing to advanced computer vision applications.
- Image fundamentals and transformations
- Image segmentation and filtering
- Object detection and tracking
- Face and feature detection
- Background removal and inpainting
- Style transfer and colorization
- QR/Barcode handling
- Motion tracking
- Advanced image effects
-
Image Fundamentals
- Color space manipulations (RGB, HSV)
- Basic transformations and rotations
- Scaling and interpolation
- Arithmetic operations
- Bitwise operations
- Histogram equalization
-
Filtering & Enhancement
- Color filtering
- Blur detection and quantification
- Noise handling
- Image denoising
- Convolutions and kernels
-
Object Detection
- YOLO implementation
- Haar Cascade Classifiers
- Face detection
- Eye detection
- Car detection
- Pedestrian detection
-
Pattern Recognition
- QR code generation and detection
- Barcode generation and detection
- Corner detection
- Line detection
- Circle detection
- Blob detection
-
Segmentation
- Watershed segmentation
- Grabcut background removal
- Contour detection and analysis
- Edge detection
- Shape detection
- Color clustering
-
Motion Analysis
- Optical flow tracking
- Dense optical flow
- Mean shift tracking
- CAMShift tracking
- Background subtraction
- Motion detection
- Style Transfer
- Neural style transfer
- ECCV16 implementation
- Caffe colorization
- Tilt-shift effects
- Image blending
- Inpainting
# Color filtering example
def filter_colors(image, lower_bound, upper_bound):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower_bound, upper_bound)
return cv2.bitwise_and(image, image, mask=mask)# Basic optical flow setup
def setup_optical_flow():
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
lucas_kanade_params = dict(winSize=(15,15), maxLevel=2)
return feature_params, lucas_kanade_paramspython 3.6+
opencv-python
numpy
matplotlib
dlib
pyzbar
python-barcode
scikit-image
tensorflow (for neural networks)- Clone the repository:
git clone https://github.com/Btzel/opencv-algorithm-implementations.git
cd opencv-algorithm-implementations- Install dependencies:
pip install -r requirements.txtopencv-algorithm-implementations/
└── opencv/
├── add_remove_noise.py # Noise handling and reduction
├── Barcode_detecting.py # Barcode detection
├── Barcode_generation.py # Barcode creation
├── blur.py # Blur effects and detection
├── caffe_colorize_image.py # Image colorization using Caffe
├── cam_shift_motion_tracking.py # CAMShift tracking algorithm
├── color_clustering.py # K-means color clustering
├── color_object_tracking.py # Color-based object tracking
├── comparing_images.py # Image comparison techniques
├── create_mask.py # Mask creation for image processing
├── dense_optical_flow_object_tracking.py # Dense optical flow
├── detect_blur.py # Blur detection
├── dlib_facial_landmark_detection.py # Facial landmarks
├── eccv16_nst.py # Neural style transfer
├── facial_recognition.py # Face recognition
├── fg_subtraction1.py # Background subtraction v1
├── fg_subtraction2.py # Background subtraction v2
├── filtering_colors.py # Color filtering
├── fundamentals.py # OpenCV basics
├── grabcut_bg_removal.py # Background removal
├── haar_cascade_classifiers.py # Object detection
├── histogram_equalization.py # Histogram processing
├── image_segmentation.py # Image segmentation
├── inpainting_images.py # Image restoration
├── mean_shift_motion_tracking.py # Mean-shift tracking
├── neural_style_transfer.py # Style transfer
├── OCR_text_detection.py # Text detection
├── optical_flow_object_tracking.py # Optical flow
├── QR_detecting.py # QR code detection
├── QR_generation.py # QR code creation
├── tilt_shift_effects.py # Tilt-shift effects
├── transform_perspectives.py # Perspective transformation
├── watershed_image_segmentation.py # Watershed algorithm
└── yolov3.py # YOLO object detection
Contributions are welcome! Feel free to:
- Fork the repository
- Create a feature branch
- Submit a Pull Request
Each implementation includes:
- Detailed comments explaining the algorithm
- Usage examples
- Parameter explanations
- Visual output examples where applicable
This project is licensed under the MIT License - see the LICENSE file for details.
- Deep learning integration
- Real-time video processing
- GPU acceleration
- Additional styling effects
- More detection models
- Performance optimizations
Note: This repository is actively maintained and new implementations are being added regularly.