Multi expert fusion disease diagnosis model CheXExperts achieved an AUC score of 0.85 and an IoR score of 0.75 in the CXR14 dataset.
- Python 3.7
- matplotlib==3.4.3
- multimethod==1.8
- numpy==1.20.3
- opencv_python==4.5.5.64
- Pillow==9.5.0
- pycocotools==2.0.4
- pyswarms==1.3.0
- PyYAML==6.0
- scikit_image==0.19.3
- scikit_learn==0.24.2
- scipy==1.7.1
- torch==1.10.2
- torchvision==0.11.3
- tqdm==4.62.3
- ttach==0.0.3
- Download the ChestX-ray14 database from here
- Unpack archives in separate directories (e.g. images_001.tar.gz into images_001)
- Download the trained models and cropped chest X-ray images here
- Unpack segmentations.tar.gz to the same level directory as ChestX-ray14 database.
- Move the best_auc_model26-0.8419458151267506.pth.tar to the CheXExperts/checkpoints/withGAA folder.
- Move the best_auc_model29-0.8544614168758137.pth.tar to the CheXExperts/checkpoints/withoutGAA folder.
- Move the csv_retinanet_epoch3.pt to the CheXExperts/retinanet/models/trained_without_neg_sample_res101 folder.
-
For verifying CheXExpert: Open the CheXExperts\cfgs\chexnet++.yaml and edit the following fields to your own dataset directory:
images_path: D:\dataset\CXR14\images
segment_path: D:\dataset\CXR14\segmentations
Run python Main.py to run verifying. -
For Training CheXExperts:
1.Training The CheXMHNet without GAA.
Copy the CheXExperts\checkpoints\withoutGAA\chexnet++.yaml to CheXExperts\cfgs\ , backup the original chexnet++.yaml file.
Open the chexnet++.yaml and edit the following fields to your own dataset directory:
images_path: D:\dataset\CXR14\images
segment_path: D:\dataset\CXR14\segmentations
Run python Main.py to run Training2.Training The CheXMHNet with GAA.
Copy the CheXExperts\checkpoints\withGAA\chexnet++.yaml to CheXExperts\cfgs\ , backup the original chexnet++.yaml file.
Open the chexnet++.yaml and edit the following fields to your own dataset directory:
images_path: D:\dataset\CXR14\images
segment_path: D:\dataset\CXR14\segmentations
Run python Main.py to run Training
GPU RTX 3060 12GB
CPU I5 10400F
Mem 16GB
