Skip to content

Contrail97/CheXExperts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CheXExperts implementation in PyTorch

Multi expert fusion disease diagnosis model CheXExperts achieved an AUC score of 0.85 and an IoR score of 0.75 in the CXR14 dataset.

alt text

Prerequisites

  • Python 3.7
  • matplotlib==3.4.3
  • multimethod==1.8
  • numpy==1.20.3
  • opencv_python==4.5.5.64
  • Pillow==9.5.0
  • pycocotools==2.0.4
  • pyswarms==1.3.0
  • PyYAML==6.0
  • scikit_image==0.19.3
  • scikit_learn==0.24.2
  • scipy==1.7.1
  • torch==1.10.2
  • torchvision==0.11.3
  • tqdm==4.62.3
  • ttach==0.0.3

Preparation

  • Download the ChestX-ray14 database from here
  • Unpack archives in separate directories (e.g. images_001.tar.gz into images_001)
  • Download the trained models and cropped chest X-ray images here
  • Unpack segmentations.tar.gz to the same level directory as ChestX-ray14 database.
  • Move the best_auc_model26-0.8419458151267506.pth.tar to the CheXExperts/checkpoints/withGAA folder.
  • Move the best_auc_model29-0.8544614168758137.pth.tar to the CheXExperts/checkpoints/withoutGAA folder.
  • Move the csv_retinanet_epoch3.pt to the CheXExperts/retinanet/models/trained_without_neg_sample_res101 folder.

Usage

  • For verifying CheXExpert: Open the CheXExperts\cfgs\chexnet++.yaml and edit the following fields to your own dataset directory:
    images_path: D:\dataset\CXR14\images
    segment_path: D:\dataset\CXR14\segmentations
    Run python Main.py to run verifying.

  • For Training CheXExperts:
    1.Training The CheXMHNet without GAA.
    Copy the CheXExperts\checkpoints\withoutGAA\chexnet++.yaml to CheXExperts\cfgs\ , backup the original chexnet++.yaml file.
    Open the chexnet++.yaml and edit the following fields to your own dataset directory:
    images_path: D:\dataset\CXR14\images
    segment_path: D:\dataset\CXR14\segmentations
    Run python Main.py to run Training

    2.Training The CheXMHNet with GAA.
    Copy the CheXExperts\checkpoints\withGAA\chexnet++.yaml to CheXExperts\cfgs\ , backup the original chexnet++.yaml file.
    Open the chexnet++.yaml and edit the following fields to your own dataset directory:
    images_path: D:\dataset\CXR14\images
    segment_path: D:\dataset\CXR14\segmentations
    Run python Main.py to run Training

Results

Experimental environment

GPU RTX 3060 12GB
CPU I5 10400F
Mem 16GB

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages