Implemented by Junho Kim
- This project is working on very specific case only.
- Font generating was only tested on 64*64 RGB image
- Some korean font are needed to run properly
- Before training, you must generate dataset
Tensorflow == 2.1.0Tensorflow-addons == 0.9.1opencv-pythonPillowtqdmgpuutilhumanizefonttools- 네이버 나눔명조옛한글 (https://hangeul.naver.com/2014/archaicword)
- 네이버 나눔바른고딕옛한글 (https://hangeul.naver.com/2014/archaicword) optional
- 배달의민족 을지로체 (https://www.woowahan.com/) optional
- 네이버 나눔고딕 (https://hangeul.naver.com/font) optional
- 네이버 나눔고딕 (https://hangeul.naver.com/font) optional
├── dataset
└── YOUR_DATASET_NAME
├── train
├── domain1 (domain folder)
├── xxx.jpg (domain1 image)
├── yyy.png
├── ...
├── domain2
├── aaa.jpg (domain2 image)
├── bbb.png
├── ...
├── ...
├── test
├── ref_imgs (domain folder)
├── domain1 (domain folder)
├── ttt.jpg (domain1 image)
├── aaa.png
├── ...
├── domain2
├── kkk.jpg (domain2 image)
├── iii.png
├── ...
├── ...
├── src_imgs
├── src1.jpg
├── src2.png
├── ...
├── practice
├── ref_imgs (domain folder)
├── domain1 (domain folder <<-- target font style)
├── ttt.jpg (domain1 image <<-- 1 image. more than 1 is meaningless)
├── src_imgs (<<-- will be automatically generated)
├── text.txt (characters you want to generate)
python main.py --dataset yet_hangul --phase train --img_size 64
python main.py --dataset yet_hangul --phase test --img_size 64
When you write yet hangul, each character must be one unicode. If not, program might read as 2 or more characters, rather than 1 character. Be careful if you copy from internet. Many yet hangul words written on internet are combinational. (ᄎᆞᆷ〮 <-- .+ㅊ+ . +ㅁ) Use this webpage would be helpful (https://www.korean.go.kr/common/oldHangeul.do)
python main.py --dataset yet_hangul --phase practice --img_size 64
click RUN ALL button...
https://drive.google.com/file/d/1dXIQG5baItHa6-5W9ZNZnJi_1OK8lol8/view?usp=sharing
The source code, pre-trained models, and dataset are available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.
For business inquiries, please contact clova-jobs@navercorp.com.
For technical and other inquires, please contact yunjey.choi@navercorp.com.
For questions about the tensorflow implementation, please contact jhkim.ai@navercorp.com.
If you find this work useful for your research, please cite our paper:
@inproceedings{choi2020starganv2,
title={StarGAN v2: Diverse Image Synthesis for Multiple Domains},
author={Yunjey Choi and Youngjung Uh and Jaejun Yoo and Jung-Woo Ha},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2020}
}


