A complete end-to-end SQL automation project featuring stored procedures, views, CTE-based reports, indexing optimization, error handling, and automated data quality checks.
This project was designed to simulate a real enterprise SQL environmentβsimilar to workflows used in banking, fintech, risk management, and data engineering teams.
customersaccountstransactionsdq_log(Data Quality Log Table)
add_transaction()β Validations + business logic + error handlingdata_quality_check()β Automated DQ scan + logging
v_customer_overviewβ customer β accounts β transaction summaryv_high_value_accountsβ accounts with high monthly volume
- Monthly transaction summary
- Last 30-day heavy activity
- TRY/CATCH
- SIGNAL for validation
- Logging failed quality checks
- Before vs After EXPLAIN plans
- Indexing strategies
- Refactored nested queries
- MySQL Event Scheduler
- Daily DQ job inserted into
dq_log
SQL-Data-Workflow-Automation/
βββ schema.sql
βββ sample_data.sql
βββ views.sql
βββ stored_procedures.sql
βββ ctes.sql
βββ automation_scripts.sql
βββ optimization.sql
βββ error_handling.sql
βββ run_all.sh
βββ assets/
β βββ **All Screenshots**
docker run --name mysql-wf -e MYSQL_ROOT_PASSWORD=pass123 -p 3306:3306 -d mysql:8.0docker cp . mysql-wf:/sql/docker exec -it mysql-wf bashcd /sql
chmod +x run_all.sh
./run_all.shPriyangkush Debnath
SQL β’ Data Engineering β’ Backend Development β’ Automation



















