Skip to content

EasyTensor/python-client

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EasyTensor

The official python client for EasyTensor.

Installation

Pretty straightforward.

pip install easytensor

Usage

Once you have a model exported to your local storage, you can upload it to easytensor in one line of code.

TensorFlow

Exporting and uploading a model

import easytensor
import os
export_path = os.path.join(os.getcwd(), "my_model")
print("export_path: {}".format(export_path))

# Export the model
tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

# Upload it to easytensor.
model_id, access_token = easytensor.tensorflow.upload_model("My first model", export_path)
print("model ID:", model_id)
print("access token:", access_token)

Running prediction on the cloud

from pprint import pprint
import requests
response = requests.post(
    "https://app.easytensor.com/query/",
    json={
        "instances": [
            image_to_predict.numpy().tolist()
        ]
    },
    headers={"accessToken": access_token}
)
print("Response from server:")
pprint(response.json())

Examples

The library comes with a few example Jupyter notebooks that walk you through a few possible workflows. They are helpful if you are starting out with ML or remote model prediction.

Requirements

For Mac
brew install python@3.8
For Ubuntu
sudo apt install python3.8 python3.8-dev

To run the examples, create a python virtual env, and install jupyter notebook.

# install virtualenv
pip3 install virtualenv

# create a virtualenv with python3.8 in ~/virtualenv-3.8
virtualenv --python=$(which python3.8) ~/virtualenv-3.8

# activate the virtual env
source ~/virtualenv-3.8/bin/activate

# install jupyter notebook and necessary widgets
pip install notebook ipywidgets

# run jupyter notebook
jupyter notebook

Questions and Help

If you have any querstions about how EasyTensor works or want help with serving your ML model, please contact me directly at kamal@easytensor.com. I'm here to help!

About

The official python client for EasyTensor

Resources

License

Stars

Watchers

Forks

Packages

No packages published