- Python 3.8, PyTorch 1.8.1, and cuda 11.1
- VOC dataset (10582 images for training; 1449 images for validation)
- NVIDIA GPU(such as:Two 1080 GPU or one 3090 GPU)
- conda install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 cudatoolkit=11.1
- pip install yacs opencv-python chainercv scikit-learn imageio
- pip install git+https://github.com/lucasb-eyer/pydensecrf.git
- data link: VOC.
- pass word:vf2j
The downloaded data structure is shown:
data_root/
--- VOC2012/
--- Annotations/
--- ImageSet/
--- JPEGImages/
--- SegmentationObject/
--- WSSS_maps/
sh run_MM.sh
1.Train classification network to generate instance-aware localization which saved in "Peak_points5" folder
we also provide our own trained instance localization.
pass word:cgqh
2.Train displacement field and eval instance segmentation
- You can either mannually edit the file, or specify commandline arguments.