Production incident investigator CLI that reconstructs cross-service failure timelines and produces a deterministic root-cause hypothesis, with optional MCP-powered log exploration.
npx frogoOr install globally:
npm install -g frogo- Configure integrations and the model:
npx frogo configure
- Run the agent chat:
npx frogo
- Run deterministic scans:
npx frogo scan npx frogo debug "why did my worker restart?"
frogo
Starts the agent chat (ai-sdk). Uses MCP tools when configured.frogo configure
Interactive configuration for Vercel, Trigger.dev, Datadog, LangSmith, and the LLM provider.frogo scan
Deterministic investigation over the default time window.frogo debug "<query>"
Narrow-window deterministic investigation with a user query bias.frogo mcp login langsmith
Store LangSmith MCP credentials.
Frogo reads from:
- Project config:
.frogo.json - Global config:
~/.frogo/config.json
Frogo does not store provider API keys in config. Agent chat uses:
export FROGO_AI_API_KEY="..."Use the hosted MCP server:
https://langsmith-mcp-server.onrender.com/mcp
Frogo sends your key as the LANGSMITH-API-KEY header.
Set:
export FROGO_LANGSMITH_API_KEY="..."Frogo can connect to a Datadog MCP server via stdio. Provide:
{
"datadog": {
"command": "datadog-mcp-server"
}
}Set:
export FROGO_DATADOG_API_KEY="..."
export FROGO_DATADOG_APP_KEY="..."- Deterministic pattern engine first
- Deterministic scans do not require LLM output
- Normalized events only (no raw logs sent to the model)
- Built to extend with more connectors and patterns
MIT