Skip to content

Houssem-25/TorchSlam

TorchSLAM Library

Overview

This library provides a comprehensive framework for implementing and experimenting with SLAM systems. It leverages PyTorch's computational capabilities, automatic differentiation, and GPU acceleration to create a flexible, modular, and extensible SLAM solution.

Core Components

Sensor Module

  • Interfaces for various sensors (RGB cameras, depth sensors, IMU, LiDAR)
  • Sensor calibration utilities
  • Data synchronization mechanisms
  • Noise modeling and uncertainty handling

Frontend Module

  • Feature extraction and tracking
  • Visual odometry pipeline
  • Keyframe selection criteria
  • Motion estimation algorithms
  • Loop closure detection

Backend Module

  • Factor graph optimization
  • Bundle adjustment
  • Pose graph optimization
  • Map refinement
  • Global consistency maintenance

Mapping Module

  • Point cloud generation and processing
  • Volumetric mapping (TSDF, occupancy grids)
  • Mesh reconstruction
  • Semantic segmentation integration
  • Dynamic object handling

State Estimation Module

  • Kalman filtering (EKF, UKF)
  • Particle filtering
  • Probabilistic state representation
  • Uncertainty propagation

System Architecture

About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published