conda create --name openmmlab python=3.8 -y
conda activate openmmlab
conda install pytorch torchvision -c pytorch
pip install -e .
Prepare COCO format dataset
coco_root_dir
├── annotations
│ ├── train.json
│ └── val.json
├── train
│ ├── image1.jpg
│ ├── image2.jpg
│ '''
└── val
├── image3.jpg
├── image4.jpg
'''
you can use 'labelme_to_coco.py' to convert labelme format to coco format.
python labelme_to_coco.py root_dir classes --save_dir --split_ratio
python labelme_to_coco.py ./labelme_root_dir cat dog bird
root_dir must have labelme json files and images.
root_dir
├── image1.jpg
├── image1.json
├── image2.jpg
├── image2.json
'''
create model
# model_type can be : mmdet, mmseg, mmpose
# mmdet-model_name can be :
# cascade_rcnn, dino-4scale, dino-5scale, rtmdet_tiny, rtmdet_x, yolox_l, yolov7_l, yolov8_l
model = create_model(model_type = "mmdet",
model_name = "cascade_rcnn",
data_root= '/home/inbada/mars_module/mars/mars/mmdetection/coco_format_data/',
classes = ('hz', 'bz', 'chem'))
model.train()
model.test()