Part of the ISL (Intelligent Storage Language) family - Revolutionary instruction-based storage that enables compression, verification, and hyper-personalization
AISL (Audio Intelligent Storage Language) is the first open-source member of the ISL family - a paradigm shift from storing data to storing instructions for recreating data.
Instead of storing audio waveforms, AISL stores instructions for recreating audio. Think of it as "source code for audio" - editable, verifiable, and personalizable.
ISL (Intelligent Storage Language) represents a fundamental rethinking of data storage:
- Traditional storage: Store the final output (waveform, pixels, text)
- ISL approach: Store instructions for recreating the output
AISL proves this concept for audio. Future ISL formats will extend this paradigm to video, images, text, and more - but AISL is the first to be released as open source.
β¨ Instruction-Based - Stores HOW to create audio, not the audio itself
ποΈ Compression - 2-3x compression with 0.99+ correlation
π Verified - Built-in cryptographic integrity checking
βοΈ Editable - Modify audio by editing instructions (v2)
π Personalizable - Insert names, adjust pitch/energy dynamically
| Feature | MP3 | FLAC | Opus | AISL |
|---|---|---|---|---|
| Instruction-based | β | β | β | β |
| Editable content | β | β | β | β |
| Built-in verification | β | β | β | β |
| Hyper-personalization | β | β | β | β |
| Good compression | β | β | β | β |
# Install dependencies
pip install -r requirements.txt
# Encode audio to AISL
python aisl_encoder.py my_audio.wav
# Decode AISL back to audio
python aisl_decoder.py my_audio.aisl output.wav
# Play AISL file directly
python aisl_player_gui.py my_audio.aislSee the demos folder for:
- Original vs encoded vs decoded files
- Complete statistics and metrics
- Quality comparisons
Results: 2.09x compression, 0.9937 correlation, 52% space saved
- π Digital libraries & archives
- ποΈ Podcast distribution
- π Audiobook platforms
- π΅ Music streaming
- π‘ Bandwidth-limited apps
- π€ Insert listener names in podcasts
- πΆ Dynamic music adaptation
- π Interactive audiobooks
- π§ Personalized meditation/fitness
- π Localized content variations
- Extract voice anchors - Capture speaker characteristics
- Generate instructions - Timing, phonetics, pitch, energy
- Compute residuals - High-quality corrections
- Apply compression - Entropy coding
- Add integrity hash - Merkle tree verification
- Verify integrity - Check Merkle tree
- Load anchors - Restore speaker characteristics
- Execute instructions - Generate base audio
- Apply residuals - Achieve high fidelity
- Output audio - Reconstructed waveform
AISL File Structure:
βββ Metadata (sample rate, duration, etc.)
βββ Voice Anchors (speaker characteristics)
βββ Instructions (timing, phonetics, features)
βββ Residuals (quality corrections)
βββ Integrity Hash (Merkle tree)
AISL provides a simple, clean SDK for integration:
from aisl_encoder import AISLEncoder
from aisl_decoder import AISLDecoder
# Encode
encoder = AISLEncoder()
encoder.encode_file("input.wav", "output.aisl")
# Decode
decoder = AISLDecoder()
audio, metadata = decoder.decode_file("output.aisl", "reconstructed.wav")
# Verify integrity
decoder.verify_integrity() # Raises exception if tamperedStreaming service:
# Convert library to AISL for storage savings
for track in music_library:
encoder = AISLEncoder()
encoder.encode_file(track.wav_path, track.aisl_path)Content distribution:
# Verify files before playback
decoder = AISLDecoder()
try:
decoder.decode_file("podcast.aisl", "temp.wav")
decoder.verify_integrity() # Ensures not tampered
play_audio("temp.wav")
except IntegrityError:
log_security_issue()from v2.aisl_editor import AISLEditor
# Load AISL file
editor = AISLEditor()
editor.load_file("podcast.aisl2")
# Personalize!
editor.insert_name("Sarah", start_time=5.0) # Insert listener name
editor.scale_energy(1.3) # Make 30% louder
editor.shift_pitch(2) # Up 2 semitones
# Save personalized version
editor.save("podcast_sarah.aisl2")git clone https://github.com/ISLHub/AISL.git
cd AISL
pip install -r requirements.txt- Python 3.8+
- NumPy
- SciPy
- librosa
- soundfile
- PyTorch (for v2 features)
- Complete Statistics - Full performance metrics
- Quick Start Guide - Get started quickly
- Player Guide - Using the audio player
- Hyper-Personalization - v2 features
| Audio | Original | AISL v1 | Ratio | Quality |
|---|---|---|---|---|
| 10s sample | 960 KB | 449 KB | 2.09x | 0.9937 |
| Full song (145s) | 26.5 MB | 7.7 MB | 3.44x | 0.9824 |
- Core encoding/decoding (v1)
- Cryptographic verification
- GUI player
- Hyper-personalization framework (v2)
- Real-time streaming support
- Multi-language TTS integration
- Mobile SDKs (iOS/Android)
- Web player (WASM)
- Plugin for DAWs
We welcome contributions! See CONTRIBUTING.md for guidelines.
MIT License with important clarifications - see LICENSE for full details.
Key Points:
- This license covers ONLY the AISL (audio) implementation
- Other ISL formats (video, image, text) remain proprietary
- Patent rights are reserved (see LICENSE for patent notice)
- Trademark rights require attribution
- Free for personal and commercial use of the audio format
If you use AISL in your research, please cite:
@software{aisl2024,
title={AISL: Audio Intelligent Storage Language},
author={Christopher Streicher},
year={2024},
url={https://github.com/ISLHub/AISL}
}- π§ Email: hello@islhub.com
- π Website: https://islhub.com
- π Issues: GitHub Issues
- π IP & Patents: help@ppgs.global
Built on the concept of Instructional Storage Language - a paradigm shift from storing data to storing instructions for recreating data.
Note: AISL v2 hyper-personalization features (name insertion, voice synthesis) are in active development. Current implementation focuses on instruction framework and metadata tracking.