Skip to content

[Bug] RuntimeError: Triton Error [CUDA]: invalid argument #3322

@github-eliviate

Description

@github-eliviate

Checklist

  • 1. I have searched related issues but cannot get the expected help.
  • 2. The bug has not been fixed in the latest version.
  • 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.

Describe the bug

报以下bug(issues里面有提到ptxas和显卡驱动的匹配问题,由于不知道ptxas与driver是如何匹配的,又是如何下载、安装的,所以没有尝试)

RuntimeError: Triton Error [CUDA]: invalid argument

运行环境:

Package                           Version       Editable project location
--------------------------------- ------------- ----------------------------------------------
accelerate                        1.4.0
addict                            2.4.0
aiohappyeyeballs                  2.4.6
aiohttp                           3.11.12
aiohttp-cors                      0.7.0
aiosignal                         1.3.2
airportsdata                      20241001
annotated-types                   0.7.0
anthropic                         0.46.0
anyio                             4.8.0
astor                             0.8.1
asttokens                         3.0.0
async-timeout                     5.0.1
attrs                             25.1.0
baidu-aip                         4.16.13
bcrypt                            4.3.0
beautifulsoup4                    4.13.3
bitsandbytes                      0.45.3
blake3                            1.0.4
blinker                           1.9.0
Brotli                            1.1.0
cachetools                        5.5.2
certifi                           2025.1.31
cffi                              1.17.1
cfgv                              3.4.0
chardet                           5.2.0
charset-normalizer                3.4.1
click                             8.1.8
cloudpickle                       3.1.1
colorful                          0.5.6
colossalai                        0.4.9
compressed-tensors                0.9.1
contexttimer                      0.3.3
contourpy                         1.3.1
cryptography                      44.0.2
cuda-bindings                     12.8.0
cuda-python                       12.8.0
cycler                            0.12.1
datasets                          3.3.2
decorator                         5.1.1
decord                            0.6.0
deepspeed                         0.15.4
Deprecated                        1.2.18
depyf                             0.18.0
diffusers                         0.29.0
dill                              0.3.8
diskcache                         5.6.3
distlib                           0.3.9
distro                            1.9.0
docstring_parser                  0.16
einops                            0.8.1
exceptiongroup                    1.2.2
executing                         2.2.0
fabric                            3.2.2
fastapi                           0.115.8
filelock                          3.17.0
fire                              0.7.0
flashinfer-python                 0.2.1.post2
Flask                             3.1.0
Flask-Cors                        5.0.0
fonttools                         4.56.0
frozenlist                        1.5.0
fsspec                            2024.12.0
galore-torch                      1.0
gevent                            24.11.1
gguf                              0.10.0
gmpy2                             2.1.5
google                            3.0.0
google-api-core                   2.24.1
google-auth                       2.38.0
googleapis-common-protos          1.68.0
greenlet                          3.1.1
grpcio                            1.70.0
h11                               0.14.0
h2                                4.2.0
hf_transfer                       0.1.9
hjson                             3.1.0
hpack                             4.1.0
httpcore                          1.0.7
httptools                         0.6.4
httpx                             0.28.1
huggingface-hub                   0.29.1
hyperframe                        6.1.0
identify                          2.6.9
idna                              3.10
importlib_metadata                8.6.1
iniconfig                         2.0.0
interegular                       0.3.3
invoke                            2.2.0
ipdb                              0.13.13
ipython                           8.32.0
itsdangerous                      2.2.0
jedi                              0.19.2
Jinja2                            3.1.5
jiter                             0.8.2
jsonschema                        4.23.0
jsonschema-specifications         2024.10.1
kiwisolver                        1.4.8
lark                              1.2.2
litellm                           1.61.13
llvmlite                          0.44.0
lm-format-enforcer                0.10.10
lmdeploy                          0.7.1         /disk2/eliviate/lmdeploy_main_branch/lmdeploy
loguru                            0.7.3
markdown-it-py                    3.0.0
MarkupSafe                        3.0.2
matplotlib                        3.10.0
matplotlib-inline                 0.1.7
mdurl                             0.1.2
mistral_common                    1.5.3
mmengine-lite                     0.10.6
modelscope                        1.23.1
mpmath                            1.3.0
msgpack                           1.1.0
msgspec                           0.19.0
multidict                         6.1.0
multiprocess                      0.70.16
nest-asyncio                      1.6.0
networkx                          3.4.2
ninja                             1.11.1.3
nodeenv                           1.9.1
numba                             0.61.0
numpy                             1.26.4
nvidia-cublas-cu12                12.4.5.8
nvidia-cuda-cupti-cu12            12.4.127
nvidia-cuda-nvrtc-cu12            12.4.127
nvidia-cuda-runtime-cu12          12.4.127
nvidia-cudnn-cu12                 9.1.0.70
nvidia-cufft-cu12                 11.2.1.3
nvidia-curand-cu12                10.3.5.147
nvidia-cusolver-cu12              11.6.1.9
nvidia-cusparse-cu12              12.3.1.170
nvidia-ml-py                      12.570.86
nvidia-nccl-cu12                  2.21.5
nvidia-nvjitlink-cu12             12.4.127
nvidia-nvtx-cu12                  12.4.127
openai                            1.63.2
opencensus                        0.11.4
opencensus-context                0.1.3
opencv-python-headless            4.11.0.86
orjson                            3.10.15
outlines                          0.1.11
outlines_core                     0.1.26
packaging                         24.2
pandas                            2.2.3
paramiko                          3.5.1
parso                             0.8.4
partial-json-parser               0.2.1.1.post5
peft                              0.11.1
pexpect                           4.9.0
pillow                            11.1.0
pip                               25.0.1
platformdirs                      4.3.6
pluggy                            1.5.0
plumbum                           1.9.0
pre_commit                        4.1.0
prometheus_client                 0.21.1
prometheus-fastapi-instrumentator 7.0.2
prompt_toolkit                    3.0.50
propcache                         0.3.0
proto-plus                        1.26.0
protobuf                          5.29.3
psutil                            7.0.0
ptyprocess                        0.7.0
pure_eval                         0.2.3
py-cpuinfo                        9.0.0
py-spy                            0.4.0
pyairports                        2.1.1
pyarrow                           19.0.1
pyasn1                            0.6.1
pyasn1_modules                    0.4.1
pybind11                          2.13.6
pycountry                         24.6.1
pycparser                         2.22
pydantic                          2.10.6
pydantic_core                     2.27.2
Pygments                          2.19.1
PyNaCl                            1.5.0
pynvml                            12.0.0
pyparsing                         3.2.1
PySocks                           1.7.1
pytest                            8.3.4
python-dateutil                   2.9.0.post0
python-dotenv                     1.0.1
python-multipart                  0.0.20
pytz                              2025.1
PyYAML                            6.0.2
pyzmq                             26.2.1
ray                               2.42.1
referencing                       0.36.2
regex                             2024.11.6
requests                          2.32.3
rich                              13.9.4
rpds-py                           0.23.1
rpyc                              6.0.0
rsa                               4.9
safetensors                       0.4.5
sentencepiece                     0.2.0
setproctitle                      1.3.4
setuptools                        75.8.0
sgl-kernel                        0.0.3.post6
shortuuid                         1.0.13
shtab                             1.7.1
six                               1.17.0
smart-open                        7.1.0
sniffio                           1.3.1
soupsieve                         2.6
stack-data                        0.6.3
starlette                         0.45.3
sympy                             1.13.1
termcolor                         2.5.0
tiktoken                          0.9.0
tokenizers                        0.20.3
tomli                             2.2.1
torch                             2.5.1
torchao                           0.8.0
torchaudio                        2.5.1
torchvision                       0.20.1
tqdm                              4.67.1
traitlets                         5.14.3
transformers                      4.46.3
triton                            3.1.0
trl                               0.8.6
typeguard                         4.4.2
typing_extensions                 4.12.2
tyro                              0.9.16
tzdata                            2025.1
urllib3                           2.3.0
uvicorn                           0.29.0
uvloop                            0.21.0
virtualenv                        20.29.2
watchfiles                        1.0.4
wcwidth                           0.2.13
websockets                        15.0
Werkzeug                          3.1.3
wheel                             0.45.1
wrapt                             1.17.2
xformers                          0.0.28.post3
xgrammar                          0.1.10
xxhash                            3.5.0
yapf                              0.43.0
yarl                              1.18.3
zipp                              3.21.0
zope.event                        5.0
zope.interface                    7.2
zstandard                         0.19.0

Reproduction

(nvidia-smi显示的显卡驱动 550.144.03; cuda驱动 CUDA Version: 12.4):
lmdeploy serve api_server /disk2/elivate/DeepSeek/DeepSeek-R1 --tp 8 --backend pytorch --chat-template deepseek --cache-max-entry-count 0.8 --server-name 0.0.0.0 --server-port 23333

Environment

sys.platform: linux
Python: 3.10.16 | packaged by conda-forge | (main, Dec  5 2024, 14:16:10) [GCC 13.3.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA H200
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.4, V12.4.131
GCC: gcc (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0
PyTorch: 2.5.1+cu124
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 12.4
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
  - CuDNN 90.1
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 

TorchVision: 0.20.1+cu124
LMDeploy: 0.7.1+
transformers: 4.46.3
gradio: Not Found
fastapi: 0.115.8
pydantic: 2.10.6
triton: 3.1.0
NVIDIA Topology: 
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5	NIC6	NIC7	NIC8	NIC9	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NV18	NODE	NODE	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	0-47,96-143	0		N/A
GPU1	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NODE	NODE	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	0-47,96-143	0		N/A
GPU2	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	0-47,96-143	0		N/A
GPU3	NV18	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	0-47,96-143	0		N/A
GPU4	NV18	NV18	NV18	NV18	 X 	NV18	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	48-95,144-191	1		N/A
GPU5	NV18	NV18	NV18	NV18	NV18	 X 	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	48-95,144-191	1		N/A
GPU6	NV18	NV18	NV18	NV18	NV18	NV18	 X 	NV18	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	48-95,144-191	1		N/A
GPU7	NV18	NV18	NV18	NV18	NV18	NV18	NV18	 X 	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	48-95,144-191	1		N/A
NIC0	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS				
NIC1	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS				
NIC2	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PIX	NODE	NODE	SYS	SYS	SYS	SYS				
NIC3	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	PIX	 X 	NODE	NODE	SYS	SYS	SYS	SYS				
NIC4	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	 X 	PIX	SYS	SYS	SYS	SYS				
NIC5	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	PIX	 X 	SYS	SYS	SYS	SYS				
NIC6	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE				
NIC7	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE				
NIC8	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PIX				
NIC9	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	SYS	SYS	NODE	NODE	PIX	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_8
  NIC9: mlx5_9

运行的是deepseek-r1
pytorch通过conda命令从官网安装

Error traceback

(RayWorkerWrapper pid=3014724) 2025-03-24 17:28:16,700 - lmdeploy - ERROR - model_agent.py:391 - Task <ModelAgentLoop> failed
(RayWorkerWrapper pid=3014724) Traceback (most recent call last):
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 386, in _on_finish_callback
(RayWorkerWrapper pid=3014724)     task.result()
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 374, in _async_loop_background
(RayWorkerWrapper pid=3014724)     await self._async_step_background(
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 322, in _async_step_background
(RayWorkerWrapper pid=3014724)     output = await self._async_model_forward(inputs,
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 248, in _async_model_forward
(RayWorkerWrapper pid=3014724)     ret = await __long_context_single_forward(inputs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 235, in __long_context_single_forward
(RayWorkerWrapper pid=3014724)     tmp_out = await __forward(inp)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 220, in __forward
(RayWorkerWrapper pid=3014724)     return await self.async_forward(inputs, swap_in_map=swap_in_map, swap_out_map=swap_out_map)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 538, in async_forward
(RayWorkerWrapper pid=3014724)     output = self._forward_impl(inputs, swap_in_map=swap_in_map, swap_out_map=swap_out_map)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 521, in _forward_impl
(RayWorkerWrapper pid=3014724)     output = model_forward(
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(RayWorkerWrapper pid=3014724)     return func(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/engine/model_agent.py", line 75, in model_forward
(RayWorkerWrapper pid=3014724)     output = model(**input_dict)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/backends/cuda/graph_runner.py", line 141, in __call__
(RayWorkerWrapper pid=3014724)     return self.model(**kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
(RayWorkerWrapper pid=3014724)     return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
(RayWorkerWrapper pid=3014724)     return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/models/deepseek_v2.py", line 641, in forward
(RayWorkerWrapper pid=3014724)     hidden_states = self.model(
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
(RayWorkerWrapper pid=3014724)     return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
(RayWorkerWrapper pid=3014724)     return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/models/deepseek_v2.py", line 593, in forward
(RayWorkerWrapper pid=3014724)     hidden_states, residual = decoder_layer(
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
(RayWorkerWrapper pid=3014724)     return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
(RayWorkerWrapper pid=3014724)     return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/models/deepseek_v2.py", line 514, in forward
(RayWorkerWrapper pid=3014724)     hidden_states = self.mlp(hidden_states)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
(RayWorkerWrapper pid=3014724)     return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
(RayWorkerWrapper pid=3014724)     return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/models/deepseek_v2.py", line 394, in forward
(RayWorkerWrapper pid=3014724)     out_states = self.experts(
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
(RayWorkerWrapper pid=3014724)     return self._call_impl(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
(RayWorkerWrapper pid=3014724)     return forward_call(*args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/nn/moe.py", line 457, in forward
(RayWorkerWrapper pid=3014724)     ret = self.impl.forward(hidden_states, topk_weights, topk_ids, self.gate_up.weight, self.gate_up.scale,
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/backends/cuda/moe.py", line 213, in forward
(RayWorkerWrapper pid=3014724)     output = fused_moe_blocked_fp8(input_quant,
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/kernels/cuda/blocked_fp8_fused_moe.py", line 294, in fused_moe_blocked_fp8
(RayWorkerWrapper pid=3014724)     gate_cache = silu_and_mul(intermediate_cache1)
(RayWorkerWrapper pid=3014724)   File "/disk2/eliviate/lmdeploy_main_branch/lmdeploy/lmdeploy/pytorch/kernels/cuda/activation.py", line 70, in silu_and_mul
(RayWorkerWrapper pid=3014724)     _silu_and_mul_kernel[grid](gate_up,
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/triton/runtime/jit.py", line 345, in <lambda>
(RayWorkerWrapper pid=3014724)     return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/triton/runtime/jit.py", line 691, in run
(RayWorkerWrapper pid=3014724)     kernel.run(grid_0, grid_1, grid_2, stream, kernel.function, kernel.packed_metadata, launch_metadata,
(RayWorkerWrapper pid=3014724)   File "/disk2/condaenvs/deepseek/lib/python3.10/site-packages/triton/backends/nvidia/driver.py", line 365, in __call__
(RayWorkerWrapper pid=3014724)     self.launch(*args, **kwargs)
(RayWorkerWrapper pid=3014724) RuntimeError: Triton Error [CUDA]: invalid argument
(RayWorkerWrapper pid=3014787) 2025-03-22 15:22:46,531 - lmdeploy - WARNING - utils.py:18 - For higher performance, please install flash_mla https://github.com/deepseek-ai/FlashMLA [repeated 7x across cluster] (Ray deduplicates logs by default. Set RAY_DEDUP_LOGS=0 to disable log deduplication, or see https://docs.ray.io/en/master/ray-observability/user-guides/configure-logging.html#log-deduplication for more options.)

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions