Skip to content

increase the GPU utilization rate, even when the parameter "--cache-max-entry-count" is set to 0.99 #3359

@vivian-chen010

Description

@vivian-chen010

The GPU utilizaiton rate can only reach to about 75%

Image

This is how I startup

lmdeploy serve api_server /data/models/deepseek-vl2 --tp 4 --server-port 8001 --dtype
float16 --log-level INFO --backend pytorch --max-batch-size 64 --cache-max-entry-count 0.99 --session-len 32768 --eager-mode --quant-policy 8

when i ran the benchmark test ,I want to reduce the TTFT : python3 profile_restful_api.py --backend lmdeploy --model /data/models/deepseek-vl2 --dataset-path /data/training_data/ShareGPT_V3_unfiltered_cleaned_split.json --dataset-name random --random-input-len 2048 --random-output-len 200 --num-prompts 5 --random-range-ratio 1

Image

but first ,I need to utilize the GPU more .

Here is the lmdeploy check_env:
sys.platform: linux
Python: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3: Tesla V100S-PCIE-32GB
CUDA_HOME: /usr/local/cuda-12.2
NVCC: Cuda compilation tools, release 12.2, V12.2.91
GCC: gcc (GCC) 8.3.1 20190311 (Red Hat 8.3.1-3)
PyTorch: 2.5.1+cu124
PyTorch compiling details: PyTorch built with:

  • GCC 9.3
  • C++ Version: 201703
  • Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX512
  • CUDA Runtime 12.4
  • NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
  • CuDNN 90.1
  • Magma 2.6.1
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,

TorchVision: 0.20.1+cu124
LMDeploy: 0.7.1+
transformers: 4.47.0
gradio: Not Found
fastapi: 0.115.11
pydantic: 2.10.6
triton: 3.1.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-31 0-1 N/A
GPU1 PHB X PHB PHB 0-31 0-1 N/A
GPU2 PHB PHB X PHB 0-31 0-1 N/A
GPU3 PHB PHB PHB X 0-31 0-1 N/A

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions