Skip to content

Jaisman/Financial_Inclusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Financial Inclusion with GenAI

A web-based Generative AI-powered solution for enabling alternative credit scoring and promoting financial literacy among underbanked populations, built for the Salesforce Futureforce AI Challenge 2025.

🏆 Project Overview

This platform leverages Generative AI, explainable ML, and Retrieval-Augmented Generation (RAG) to address financial inclusion. Built as a modern web app with:

  • Frontend: React (with Vite and Tailwind CSS)
  • Backend: Node.js + Express
  • Database: MongoDB

Key Features

  • Alternative Credit Scoring: Predicts user credit scores using synthetic data and ML models for users lacking formal credit history.
  • Explainable AI: Uses SHAP values to explain scores, with Gemini API for user-friendly explanations.
  • Educational Chatbot: Personalized RAG-based chatbot for financial literacy and awareness.
  • Scheme Discovery: Workflow for users to discover and apply to eligible NGO or government support schemes.

🚀 Demo

Coming soon!


🖼️ Architecture

Frontend (React + Vite)  <--->  Backend (Node.js + Express)  <--->  MongoDB
         |                                 |                        |
         |---> RAG chatbot (EduChat)       |---> ML/SHAP API        |
         |---> Credit Score Dashboard      |---> User/Auth API      |
         |---> Scheme Application          |---> Data API           |

📦 Installation

1. Clone the repository

git clone https://github.com/Jaisman/Financial_Inclusion.git
cd Financial_Inclusion

2. Setup the backend

cd backend
npm install
# Make sure to update MongoDB connection string in backend/index.js if needed
npm start

3. Setup the flask backend

cd ../flask_backend
pip install -r requirements.txt
python app.py

4. Setup the frontend

cd ../frontend
npm install
npm run dev

4. Access the app


🛠️ Technologies Used

  • Frontend: React, Vite, Tailwind CSS, React Router
  • Backend: Node.js, Express, Mongoose, JWT, CORS
  • Database: MongoDB Atlas (or local MongoDB)
  • AI/ML: SHAP, Gemini API, Gradient Boosting Regressor (ML code in /flask_backend or external service)
  • Other: Axios, bcrypt, cookie-parser

💡 Solution Highlights

  • Synthetic Data Generation: For alternative credit scoring, since real underbanked datasets are hard to find.
  • Explainable ML: SHAP values integrated with Gemini API to generate user-friendly explanations.
  • RAG Chatbot: EduChat guides users on financial literacy, via a floating button.
  • User Workflows: Auth (login/register), profile management, dashboard, credit score insights, scheme application, financial quiz.

📁 Repository Structure

.
├── backend/           # Node.js + Express backend (user APIs, MongoDB models, ML integration)
├── frontend/          # React frontend (Vite, Tailwind, EduChat, dashboards, etc.)
├── flask_backend/     # Python backend for ML/SHAP/Gemini logic if needed
├── .vscode/           # Editor/IDE config
├── README.md
├── package.json
└── package-lock.json

🔑 Sample Code Highlights

  • Frontend Routing: frontend/src/App.jsx
  • User Model: backend/models/user.js
  • MongoDB Connection: backend/connection.js
  • User API Routes: backend/routes/user.js
  • Sample Data Insertion: backend/sample.js

📝 How to Contribute

  1. Fork this repo
  2. Create a new branch
  3. Commit your changes
  4. Open a Pull Request

📚 References


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •