A web-based Generative AI-powered solution for enabling alternative credit scoring and promoting financial literacy among underbanked populations, built for the Salesforce Futureforce AI Challenge 2025.
This platform leverages Generative AI, explainable ML, and Retrieval-Augmented Generation (RAG) to address financial inclusion. Built as a modern web app with:
- Frontend: React (with Vite and Tailwind CSS)
- Backend: Node.js + Express
- Database: MongoDB
- Alternative Credit Scoring: Predicts user credit scores using synthetic data and ML models for users lacking formal credit history.
- Explainable AI: Uses SHAP values to explain scores, with Gemini API for user-friendly explanations.
- Educational Chatbot: Personalized RAG-based chatbot for financial literacy and awareness.
- Scheme Discovery: Workflow for users to discover and apply to eligible NGO or government support schemes.
Coming soon!
Frontend (React + Vite) <---> Backend (Node.js + Express) <---> MongoDB
| | |
|---> RAG chatbot (EduChat) |---> ML/SHAP API |
|---> Credit Score Dashboard |---> User/Auth API |
|---> Scheme Application |---> Data API |
git clone https://github.com/Jaisman/Financial_Inclusion.git
cd Financial_Inclusioncd backend
npm install
# Make sure to update MongoDB connection string in backend/index.js if needed
npm startcd ../flask_backend
pip install -r requirements.txt
python app.pycd ../frontend
npm install
npm run dev- Frontend runs on http://localhost:5173
- Backend runs on http://localhost:8000
- Flaks Backend runs on http://localhost:5000
- Frontend: React, Vite, Tailwind CSS, React Router
- Backend: Node.js, Express, Mongoose, JWT, CORS
- Database: MongoDB Atlas (or local MongoDB)
- AI/ML: SHAP, Gemini API, Gradient Boosting Regressor (ML code in
/flask_backendor external service) - Other: Axios, bcrypt, cookie-parser
- Synthetic Data Generation: For alternative credit scoring, since real underbanked datasets are hard to find.
- Explainable ML: SHAP values integrated with Gemini API to generate user-friendly explanations.
- RAG Chatbot: EduChat guides users on financial literacy, via a floating button.
- User Workflows: Auth (login/register), profile management, dashboard, credit score insights, scheme application, financial quiz.
.
├── backend/ # Node.js + Express backend (user APIs, MongoDB models, ML integration)
├── frontend/ # React frontend (Vite, Tailwind, EduChat, dashboards, etc.)
├── flask_backend/ # Python backend for ML/SHAP/Gemini logic if needed
├── .vscode/ # Editor/IDE config
├── README.md
├── package.json
└── package-lock.json
- Frontend Routing:
frontend/src/App.jsx - User Model:
backend/models/user.js - MongoDB Connection:
backend/connection.js - User API Routes:
backend/routes/user.js - Sample Data Insertion:
backend/sample.js
- Fork this repo
- Create a new branch
- Commit your changes
- Open a Pull Request